1.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
2.The Effect of Postnatal Systemic Corticosteroid on Neurodevelopmental Outcome in Very Low Birth Weight Preterm Infants
Joo Yun YANG ; Young Min YOUN ; Jung In KANG ; Ye Jin HAN ; Do Kyung LEE ; Hyun Kyung BAE ; So-Yeon SHIM
Neonatal Medicine 2025;32(1):10-20
Purpose:
This study aimed to investigate the effects of postnatal systemic corticosteroids on neurodevelopment in very low birth weight (VLBW) preterm infants.
Methods:
This was a population-based study of the Korean Neonatal Network of VLBW infant born at 23+0 and 31+6 weeks of gestation between 2013 and 2020. VLBW preterm infants assessed using the Bayley Scales of Infant and Toddler Development, third edition (BSID-III) at 18–24 months of corrected age and 3 years of age were enrolled. The primary outcomes were BSID-III scores and neurodevelopmental delays, with scores of <85. Socioeconomic status and clinical variables were adjusted for using multivariate regression analyses.
Results:
In total, 517 infants were enrolled in this study. Among the 216 (41.8%) infants who received postnatal systemic corticosteroids, the rate of cognitive delay was significantly higher at 18–24 months of corrected age than at 3 years of age. The rates of language and motor delays were significantly higher both at 18–24 months of corrected age and at 3 years of age. When multivariate logistic regression was performed, postnatal systemic corticosteroid use was significantly associated with cognitive delay at 18–24 months of corrected age, but not at 3 years of age. There was no significant association between postnatal systemic corticosteroid use and language or motor delay at 18-24 months of corrected age or at 3 years of age after multivariate logistic regression.
Conclusion
Postnatal systemic corticosteroid use in VLBW preterm infants increased the risk of cognitive delay at 18–24 months of corrected age, but not at 3 years.
3.Microglial galectin-3 increases with aging in the mouse hippocampus
Hyun Joo SHIN ; So Jeong LEE ; Hyeong Seok AN ; Ha Nyeoung CHOI ; Eun Ae JEONG ; Jaewoong LEE ; Kyung Eun KIM ; Bong-Hoi CHOI ; Seung Pil YUN ; Dawon KANG ; Sang Soo KANG ; Gu Seob ROH
The Korean Journal of Physiology and Pharmacology 2025;29(2):215-225
Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood. In the present study, we investigated aging-related mechanisms and microglial galectin-3 expression in the mouse hippocampus using female 6-, 12-, and 24-month-old C57BL/6 mice. Western blot analysis revealed neurodegeneration, blood-brain barrier leakage, and increased levels of neuroinflammation-related proteins in 24-month-old mice compared to 6- and 12-month-old mice. Immunohistochemistry revealed an increase in activated microglia in the hippocampus of 24-month-old mice compared to 6- and 12-month-old mice. Furthermore, we found more galectin-3 and triggering receptor expressed on myeloid cells-2-positive microglia in 24-month-old mice compared to 6- and 12-month-old mice. Using primary mouse microglial cells, galectin -3 was also increased by lipopolysaccharide treatment. These findings suggest that galectin-3 may play an important role in microglial activation and neuroinflammation during brain aging.
4.Erratum: Correction of Text in the Article “The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)”
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2025;55(3):256-257
5.Changing in awareness of anaphylaxis through online and offlineeducation programs among community child health workers in Korea
Ji Hyun OH ; Gil-Soon CHOI ; Minyoung JUNG ; Hye Won KANG ; NaYoung KIM ; Yun Hee JUNG ; Nan-Kyung KIM ; Hee-Kyoo KIM
Allergy, Asthma & Respiratory Disease 2025;13(1):30-34
Purpose:
Anaphylaxis is a life-threatening condition that requires prompt recognition and treatment. Particularly in children, anaphylaxis often occurs in the child care facilities, making the role of teachers crucial. The aim of this study is to evaluate the extent of improvement in anaphylaxis awareness among child care facilities teachers both online and offline education programs.
Methods:
On June 22 and October 18–19, 2022, a total of 387 teachers from child care facilities in Busan participated. Among them, 271 individuals received education and completed surveys online in June, and 116 participated offline in October. We administered 9 items of questionnaire survey on knowledge, and management skills for anaphylaxis before and after the educational sessions were provided by an allergy specialist.
Results:
The overall correct answer rates for awareness were improved from 57.1% before to 67.3% after education. Awareness of anaphylaxis symptoms was the lowest (10.1%) before education, it has improved after education, but it remained the lowest (22.5%).Awareness of self-injectable epinephrine was significantly improved from 79.8% to 93.8%, and awareness of the injection site increased from 55.8% to 86.8%. Based on the education methods, the awareness improvement rate was 5% (56.6%→61.5%) for online and 14% (57.5%→73.0%) for offline (P < 0.01).
Conclusion
The correct awareness of anaphylaxis is important, so repetitive, systematic and continuous education is necessary to improve and promote. Additionally, the results suggest that an educational method combining practice and feedback in offline services may be more effective than online methods in enhancing awareness of anaphylaxis.
6.The Survival and Financial Benefit of Investigator-Initiated Trials Conducted by Korean Cancer Study Group
Bum Jun KIM ; Chi Hoon MAENG ; Bhumsuk KEAM ; Young-Hyuck IM ; Jungsil RO ; Kyung Hae JUNG ; Seock-Ah IM ; Tae Won KIM ; Jae Lyun LEE ; Dae Seog HEO ; Sang-We KIM ; Keunchil PARK ; Myung-Ju AHN ; Byoung Chul CHO ; Hoon-Kyo KIM ; Yoon-Koo KANG ; Jae Yong CHO ; Hwan Jung YUN ; Byung-Ho NAM ; Dae Young ZANG
Cancer Research and Treatment 2025;57(1):39-46
Purpose:
The Korean Cancer Study Group (KCSG) is a nationwide cancer clinical trial group dedicated to advancing investigator-initiated trials (IITs) by conducting and supporting clinical trials. This study aims to review IITs conducted by KCSG and quantitatively evaluate the survival and financial benefits of IITs for patients.
Materials and Methods:
We reviewed IITs conducted by KCSG from 1998 to 2023, analyzing progression-free survival (PFS) and overall survival (OS) gains for participants. PFS and OS benefits were calculated as the difference in median survival times between the intervention and control groups, multiplied by the number of patients in the intervention group. Financial benefits were assessed based on the cost of investigational products provided.
Results:
From 1998 to 2023, KCSG conducted 310 IITs, with 133 completed and published. Of these, 21 were included in the survival analysis. The analysis revealed that 1,951 patients in the intervention groups gained a total of 2,558.4 months (213.2 years) of PFS and 2,501.6 months (208.5 years) of OS, with median gains of 1.31 months in PFS and 1.58 months in OS per patient. When analyzing only statistically significant results, PFS and OS gain per patients was 1.69 months and 3.02 months, respectively. Investigational drug cost analysis from six available IITs indicated that investigational products provided to 252 patients were valued at 10,400,077,294 won (approximately 8,046,481 US dollars), averaging about 41,270,148 won (approximately 31,930 US dollars) per patient.
Conclusion
Our findings, based on analysis of published research, suggest that IITs conducted by KCSG led to survival benefits for participants and, in some studies, may have provided financial benefits by providing investment drugs.
7.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
8.The Effect of Postnatal Systemic Corticosteroid on Neurodevelopmental Outcome in Very Low Birth Weight Preterm Infants
Joo Yun YANG ; Young Min YOUN ; Jung In KANG ; Ye Jin HAN ; Do Kyung LEE ; Hyun Kyung BAE ; So-Yeon SHIM
Neonatal Medicine 2025;32(1):10-20
Purpose:
This study aimed to investigate the effects of postnatal systemic corticosteroids on neurodevelopment in very low birth weight (VLBW) preterm infants.
Methods:
This was a population-based study of the Korean Neonatal Network of VLBW infant born at 23+0 and 31+6 weeks of gestation between 2013 and 2020. VLBW preterm infants assessed using the Bayley Scales of Infant and Toddler Development, third edition (BSID-III) at 18–24 months of corrected age and 3 years of age were enrolled. The primary outcomes were BSID-III scores and neurodevelopmental delays, with scores of <85. Socioeconomic status and clinical variables were adjusted for using multivariate regression analyses.
Results:
In total, 517 infants were enrolled in this study. Among the 216 (41.8%) infants who received postnatal systemic corticosteroids, the rate of cognitive delay was significantly higher at 18–24 months of corrected age than at 3 years of age. The rates of language and motor delays were significantly higher both at 18–24 months of corrected age and at 3 years of age. When multivariate logistic regression was performed, postnatal systemic corticosteroid use was significantly associated with cognitive delay at 18–24 months of corrected age, but not at 3 years of age. There was no significant association between postnatal systemic corticosteroid use and language or motor delay at 18-24 months of corrected age or at 3 years of age after multivariate logistic regression.
Conclusion
Postnatal systemic corticosteroid use in VLBW preterm infants increased the risk of cognitive delay at 18–24 months of corrected age, but not at 3 years.
9.Microglial galectin-3 increases with aging in the mouse hippocampus
Hyun Joo SHIN ; So Jeong LEE ; Hyeong Seok AN ; Ha Nyeoung CHOI ; Eun Ae JEONG ; Jaewoong LEE ; Kyung Eun KIM ; Bong-Hoi CHOI ; Seung Pil YUN ; Dawon KANG ; Sang Soo KANG ; Gu Seob ROH
The Korean Journal of Physiology and Pharmacology 2025;29(2):215-225
Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood. In the present study, we investigated aging-related mechanisms and microglial galectin-3 expression in the mouse hippocampus using female 6-, 12-, and 24-month-old C57BL/6 mice. Western blot analysis revealed neurodegeneration, blood-brain barrier leakage, and increased levels of neuroinflammation-related proteins in 24-month-old mice compared to 6- and 12-month-old mice. Immunohistochemistry revealed an increase in activated microglia in the hippocampus of 24-month-old mice compared to 6- and 12-month-old mice. Furthermore, we found more galectin-3 and triggering receptor expressed on myeloid cells-2-positive microglia in 24-month-old mice compared to 6- and 12-month-old mice. Using primary mouse microglial cells, galectin -3 was also increased by lipopolysaccharide treatment. These findings suggest that galectin-3 may play an important role in microglial activation and neuroinflammation during brain aging.
10.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.

Result Analysis
Print
Save
E-mail