1.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
3.Basal cell adenocarcinoma in the retromolar trigone: A case report
Bong-Hae CHO ; Yun-Hoa JUNG ; Jae-Joon HWANG ; Mi-Heon RYU ; Ji-Soo LEE
Imaging Science in Dentistry 2025;55(1):96-101
Basal cell adenocarcinoma, considered to be the malignant counterpart of basal cell adenoma, is a rare, low-grade malignant tumor of the salivary glands, accounting for 1-2% of salivary gland malignancies. It predominantly affects the parotid gland, while involvement of the minor salivary glands is exceptionally rare. This report presented a case of basal cell adenocarcinoma involving the left retromolar trigone in a 54-year-old woman. The initial provisional diagnosis suggested a benign or low-grade malignant salivary tumor. Advanced magnetic resonance imagingtechniques, including diffusion-weighted imaging and apparent diffusion coefficient analysis, aided in the preoperative prediction of malignancy, and an incisional biopsy confirmed the diagnosis of basal cell adenocarcinoma. This caseunderscored the challenge of distinguishing basal cell adenocarcinoma from benign salivary tumors, as clinical and imaging features often overlap. Surgical excision remains the primary treatment, yielding favorable outcomes;however, long-term follow-up is crucial due to the risk of recurrence.
5.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
7.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
9.Effect of Wearing Phospholipid-releasing Contact Lenses on Dry Eyes in Rabbits
Hyeon Jung KIM ; Sehie PARK ; Yun Kyoung RYU ; Jin Sun HWANG ; Sun Hee OH ; Jae Hwi LEE ; Gui Bae KIM ; Young Joo SHIN
Journal of the Korean Ophthalmological Society 2025;66(4):181-190
Purpose:
To investigate whether a new phospholipid-releasing soft contact lens can improve symptoms of dry eyes.
Methods:
The study used 2.5-3.0 kg New Zealand rabbits including both normal non-dry eye rabbits and dry eye rabbits, the latter having undergone electrocauterization of the meibomian glands to block the gland orifices. Each rabbit wore a control contact lens on one eye and a phospholipid-releasing contact lens on the other eye daily. Phospholipid-releasing and control contact lenses were provided by NEOVISION Co., Ltd. The parameters assessed included tear film break-up time, tear osmolarity, ocular surface staining, and central corneal thickness. After the experiment, the rabbits were euthanized and their conjunctival tissue was stained with Periodic Acid Schiff (PAS) to observe conjunctival goblet cells.
Results:
In both dry eye and normal non-dry eye rabbits, tear film break-up time was longer and tear osmolarity was lower when using the phospholipid-releasing contact lens compared to the control contact lens. The ocular surface remained unstained in normal non-dry eye rabbits while staining was observed in dry eye rabbits. There was no significant difference in central corneal thickness between the control and phospholipid-releasing contact lenses in either group. PAS staining showed no difference in conjunctival goblet cell density between the two lens types in normal non-dry eye rabbits. However, in dry eye rabbits, the conjunctival goblet cell density tended to be slightly higher with the phospholipid-releasing contact lens compared to the control lens.
Conclusions
Phospholipid-releasing contact lenses may help reduce dry eye symptoms and minimize contact lens-related complications by stabilizing the tear film and lowering tear osmolarity.
10.Erratum: Korean Gastric Cancer Association-Led Nationwide Survey on Surgically Treated Gastric Cancers in 2023
Dong Jin KIM ; Jeong Ho SONG ; Ji-Hyeon PARK ; Sojung KIM ; Sin Hye PARK ; Cheol Min SHIN ; Yoonjin KWAK ; Kyunghye BANG ; Chung-sik GONG ; Sung Eun OH ; Yoo Min KIM ; Young Suk PARK ; Jeesun KIM ; Ji Eun JUNG ; Mi Ran JUNG ; Bang Wool EOM ; Ki Bum PARK ; Jae Hun CHUNG ; Sang-Il LEE ; Young-Gil SON ; Dae Hoon KIM ; Sang Hyuk SEO ; Sejin LEE ; Won Jun SEO ; Dong Jin PARK ; Yoonhong KIM ; Jin-Jo KIM ; Ki Bum PARK ; In CHO ; Hye Seong AHN ; Sung Jin OH ; Ju-Hee LEE ; Hayemin LEE ; Seong Chan GONG ; Changin CHOI ; Ji-Ho PARK ; Eun Young KIM ; Chang Min LEE ; Jong Hyuk YUN ; Seung Jong OH ; Eunju LEE ; Seong-A JEONG ; Jung-Min BAE ; Jae-Seok MIN ; Hyun-dong CHAE ; Sung Gon KIM ; Daegeun PARK ; Dong Baek KANG ; Hogoon KIM ; Seung Soo LEE ; Sung Il CHOI ; Seong Ho HWANG ; Su-Mi KIM ; Moon Soo LEE ; Sang Hyun KIM ; Sang-Ho JEONG ; Yusung YANG ; Yonghae BAIK ; Sang Soo EOM ; Inho JEONG ; Yoon Ju JUNG ; Jong-Min PARK ; Jin Won LEE ; Jungjai PARK ; Ki Han KIM ; Kyung-Goo LEE ; Jeongyeon LEE ; Seongil OH ; Ji Hun PARK ; Jong Won KIM ;
Journal of Gastric Cancer 2025;25(2):400-402

Result Analysis
Print
Save
E-mail