1.Comparing Montreal Cognitive Assessment Performance in Parkinson’s Disease Patients: Age- and Education-Adjusted Cutoffs vs. Machine Learning
Kyeongmin BAEK ; Young Min KIM ; Han Kyu NA ; Junki LEE ; Dong Ho SHIN ; Seok-Jae HEO ; Seok Jong CHUNG ; Kiyong KIM ; Phil Hyu LEE ; Young H. SOHN ; Jeehee YOON ; Yun Joong KIM
Journal of Movement Disorders 2024;17(2):171-180
Objective:
The Montreal Cognitive Assessment (MoCA) is recommended for general cognitive evaluation in Parkinson’s disease (PD) patients. However, age- and education-adjusted cutoffs specifically for PD have not been developed or systematically validated across PD cohorts with diverse education levels.
Methods:
In this retrospective analysis, we utilized data from 1,293 Korean patients with PD whose cognitive diagnoses were determined through comprehensive neuropsychological assessments. Age- and education-adjusted cutoffs were formulated based on 1,202 patients with PD. To identify the optimal machine learning model, clinical parameters and MoCA domain scores from 416 patients with PD were used. Comparative analyses between machine learning methods and different cutoff criteria were conducted on an additional 91 consecutive patients with PD.
Results:
The cutoffs for cognitive impairment decrease with increasing age within the same education level. Similarly, lower education levels within the same age group correspond to lower cutoffs. For individuals aged 60–80 years, cutoffs were set as follows: 25 or 24 years for those with more than 12 years of education, 23 or 22 years for 10–12 years, and 21 or 20 years for 7–9 years. Comparisons between age- and education-adjusted cutoffs and the machine learning method showed comparable accuracies. The cutoff method resulted in a higher sensitivity (0.8627), whereas machine learning yielded higher specificity (0.8250).
Conclusion
Both the age- and education-adjusted cutoff methods and machine learning methods demonstrated high effectiveness in detecting cognitive impairment in PD patients. This study highlights the necessity of tailored cutoffs and suggests the potential of machine learning to improve cognitive assessment in PD patients.
3.Cortical Thickness and Brain Glucose Metabolism in Healthy Aging
Kyoungwon BAIK ; Seun JEON ; Soh-Jeong YANG ; Yeona NA ; Seok Jong CHUNG ; Han Soo YOO ; Mijin YUN ; Phil Hyu LEE ; Young H. SOHN ; Byoung Seok YE
Journal of Clinical Neurology 2023;19(2):138-146
Background:
and PurposeWe aimed to determine the effect of demographic factors on cortical thickness and brain glucose metabolism in healthy aging subjects.
Methods:
The following tests were performed on 71 subjects with normal cognition: neurological examination, 3-tesla magnetic resonance imaging, 18F-fluorodeoxyglucose positron-emission tomography, and neuropsychological tests. Cortical thickness and brain metabolism were measured using vertex- and voxelwise analyses, respectively. General linear models (GLMs) were used to determine the effects of age, sex, and education on cortical thickness and brain glucose metabolism. The effects of mean lobar cortical thickness and mean lobar metabolism on neuropsychological test scores were evaluated using GLMs after controlling for age, sex, and education. The intracranial volume (ICV) was further included as a predictor or covariate for the cortical thickness analyses.
Results:
Age was negatively correlated with the mean cortical thickness in all lobes (frontal and parietal lobes, p=0.001; temporal and occipital lobes, p<0.001) and with the mean temporal metabolism (p=0.005). Education was not associated with cortical thickness or brain metabolism in any lobe. Male subjects had a lower mean parietal metabolism than did female subjects (p<0.001), while their mean cortical thicknesses were comparable. ICV was positively correlated with mean cortical thickness in the frontal (p=0.016), temporal (p=0.009), and occipital (p=0.007) lobes. The mean lobar cortical thickness was not associated with cognition scores, while the mean temporal metabolism was positively correlated with verbal memory test scores.
Conclusions
Age and sex affect cortical thickness and brain glucose metabolism in different ways. Demographic factors must therefore be considered in analyses of cortical thickness and brain metabolism.
4.Single-cell RNA sequencing identifies distinct transcriptomic signatures between PMA/ionomycin- and αCD3/αCD28-activated primary human T cells
Jung Ho LEE ; Brian H LEE ; Soyoung JEONG ; Christine Suh-Yun JOH ; Hyo Jeong NAM ; Hyun Seung CHOI ; Henry SSERWADDA ; Ji Won OH ; Chung-Gyu PARK ; Seon-Pil JIN ; Hyun Je KIM
Genomics & Informatics 2023;21(2):e18-
Immunologists have activated T cells in vitro using various stimulation methods, including phorbol myristate acetate (PMA)/ionomycin and αCD3/αCD28 agonistic antibodies. PMA stimulates protein kinase C, activating nuclear factor-κB, and ionomycin increases intracellular calcium levels, resulting in activation of nuclear factor of activated T cell. In contrast, αCD3/αCD28 agonistic antibodies activate T cells through ZAP-70, which phosphorylates linker for activation of T cell and SH2-domain-containing leukocyte protein of 76 kD. However, despite the use of these two different in vitro T cell activation methods for decades, the differential effects of chemical-based and antibody-based activation of primary human T cells have not yet been comprehensively described. Using single-cell RNA sequencing (scRNA-seq) technologies to analyze gene expression unbiasedly at the single-cell level, we compared the transcriptomic profiles of the non-physiological and physiological activation methods on human peripheral blood mononuclear cell–derived T cells from four independent donors. Remarkable transcriptomic differences in the expression of cytokines and their respective receptors were identified. We also identified activated CD4 T cell subsets (CD55+) enriched specifically by PMA/ionomycin activation. We believe this activated human T cell transcriptome atlas derived from two different activation methods will enhance our understanding, highlight the optimal use of these two in vitro T cell activation assays, and be applied as a reference standard when analyzing activated specific disease-originated T cells through scRNA-seq.
5.Do Magnets Have the Potential to Serve as a Stabilizer for the Shoulder Joint in Massive Rotator Cuff Tears?: A Biomechanical Cadaveric Study
Yoon Sang JEON ; Sang Hyun KO ; Yun Moon JEON ; Dong Jin RYU ; Jeong Seok KIM ; Hyun Soon PARK ; Min-Shik CHUNG ; Daniel KWAK ; Michelle H. MCGARRY ; Thay Q. LEE
Clinics in Orthopedic Surgery 2023;15(4):616-626
Background:
Disruption of the rotator cuff muscles compromises concavity compression force, which leads to superior migration of the humeral head and loss of stability. A novel idea of using the magnetic force to achieve shoulder stabilization in massive rotator cuff tears (MRCTs) was considered because the magnets can stabilize two separate entities with an attraction force. This study aimed to investigate the biomechanical effect of the magnetic force on shoulder stabilization in MRCTs.
Methods:
Seven fresh frozen cadaveric specimens were used with a customized shoulder testing system. Three testing conditions were set up: condition 1, intact rotator cuff without magnets; condition 2, an MRCT without magnets; condition 3, an MRCT with magnets. For each condition, anterior-posterior translation, superior translation, superior migration, and subacromial contact pressure were measured at 0°, 30°, and 60° of abduction. The abduction capability of condition 2 was compared with that of condition 3.
Results:
The anterior-posterior and superior translations increased in condition 2; however, they decreased compared to condition 2 when the magnets were applied (condition 3) in multiple test positions and loadings (p <0.05). Abduction capability improved significantly in condition 3 compared with that in condition 2, even for less deltoid loading (p < 0.05).
Conclusions
The magnet biomechanically played a positive role in stabilizing the shoulder joint and enabled abduction with less deltoid force in MRCTs. However, to ensure that the magnet is clinically applicable as a stabilizer for the shoulder joint, it is necessary to thoroughly verify its safety in the human body and to conduct further research on technical challenges.
6.Low Neutralizing Activities to theOmicron Subvariants BN.1 and XBB.1.5 of Sera From the Individuals Vaccinated With a BA.4/5-Containing Bivalent mRNA Vaccine
Eliel NHAM ; Jineui KIM ; Jungmin LEE ; Heedo PARK ; Jeonghun KIM ; Sohyun LEE ; Jaeuk CHOI ; Kyung Taek KIM ; Jin Gu YOON ; Soon Young H HWANG ; Joon Young SONG ; Hee Jin CHEONG ; Woo Joo KIM ; Man-Seong PARK ; Ji Yun NOH
Immune Network 2023;23(6):e43-
The continuous emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants has provided insights for updating current coronavirus disease 2019 (COVID-19) vaccines. We examined the neutralizing activity of Abs induced by a BA.4/5-containing bivalent mRNA vaccine against Omicron subvariants BN.1 and XBB.1.5. We recruited 40 individuals who had received a monovalent COVID-19 booster dose after a primary series of COVID-19 vaccinations and will be vaccinated with a BA.4/5-containing bivalent vaccine. Sera were collected before vaccination, one month after, and three months after a bivalent booster.Neutralizing Ab (nAb) titers were measured against ancestral SARS-CoV-2 and Omicron subvariants BA.5, BN.1, and XBB.1.5. BA.4/5-containing bivalent vaccination significantly boosted nAb levels against both ancestral SARS-CoV-2 and Omicron subvariants. Participants with a history of SARS-CoV-2 infection had higher nAb titers against all examined strains than the infection-naïve group. NAb titers against BN.1 and XBB.1.5 were lower than those against the ancestral SARS-CoV-2 and BA.5 strains. These results suggest that COVID-19 vaccinations specifically targeting emerging Omicron subvariants, such as XBB.1.5, may be required to ensure better protection against SARS-CoV-2 infection, especially in high-risk groups.
7.PARP inhibitors in ovarian cancer: overcoming resistance with combination strategies
Rowan E MILLER ; Karim H EL-SHAKANKERY ; Jung-Yun LEE
Journal of Gynecologic Oncology 2022;33(3):e44-
The use of PARP inhibitors (PARPi) in patients with epithelial ovarian cancer is expanding, with the transition from use in recurrent disease to the first-line setting. This is accompanied with an increasing population of patients who develop acquired PARPi resistance. Coupled with those patients with primary PARPi resistance, there is an urgent need to better understand mechanisms of resistance and identify means to overcome this resistance. Combination therapy offers the potential to overcome innate and acquired resistance, by either working synergistically with PARPi or by restoring homologous recombination deficiency, targeting the homologous recombination repair pathway through an alternate strategy. We discuss mechanisms of PARPi resistance and data on novel combinations which may restore PARPi sensitivity.
8.Potential Link Between Cognition and Motor Reserve in Patients With Parkinson’s Disease
Seok Jong CHUNG ; Yae Ji KIM ; Yun Joong KIM ; Hye Sun LEE ; Mijin YUN ; Phil Hyu LEE ; Yong JEONG ; Young H. SOHN
Journal of Movement Disorders 2022;15(3):249-257
Objective:
To investigate whether there is a link between cognitive function and motor reserve (i.e., individual capacity to cope with nigrostriatal dopamine depletion) in patients with newly diagnosed Parkinson’s disease (PD).
Methods:
A total of 163 patients with drug-naïve PD who underwent 18F-FP-CIT PET, brain MRI, and a detailed neuropsychological test were enrolled. We estimated individual motor reserve based on initial motor deficits and striatal dopamine depletion using a residual model. We performed correlation analyses between motor reserve estimates and cognitive composite scores. Diffusion connectometry analysis was performed to map the white matter fiber tracts, of which fractional anisotropy (FA) values were well correlated with motor reserve estimates. Additionally, Cox regression analysis was used to assess the effect of initial motor reserve on the risk of dementia conversion.
Results:
The motor reserve estimate was positively correlated with the composite score of the verbal memory function domain (γ = 0.246) and with the years of education (γ = 0.251). Connectometry analysis showed that FA values in the left fornix were positively correlated with the motor reserve estimate, while no fiber tracts were negatively correlated with the motor reserve estimate. Cox regression analysis demonstrated that higher motor reserve estimates tended to be associated with a lower risk of dementia conversion (hazard ratio, 0.781; 95% confidence interval, 0.576–1.058).
Conclusion
The present study demonstrated that the motor reserve estimate was well correlated with verbal memory function and with white matter integrity in the left fornix, suggesting a possible link between cognition and motor reserve in patients with PD.
9.Comparison of Reproducibility of Linear Measurements on Digital Models among Intraoral Scanners, Desktop Scanners, and Cone-beam Computed Tomography
Deuk-Won JO ; Mijoo KIM ; Reuben H. KIM ; Yang-Jin YI ; Nam-Ki LEE ; Pil-Young YUN
Journal of Korean Dental Science 2022;15(1):1-8
Purpose:
Intraoral scanners, desktop scanners, and cone-beam computed tomography (CBCT) are being used in a complementary way for diagnosis and treatment planning. Limited patient-based results are available about dimensional reproducibility among different three-dimensional imaging systems. This study aimed to evaluate dimensional reproducibility among patient-derived digital models created from an intraoral scanner, desktop scanner, and two CBCT systems.
Materials and Methods:
Twenty-nine arches from sixteen patients who were candidates for implant treatments were enrolled. Different types of CBCT systems (KCT and VCT) were used before and after the surgery. Polyvinylsiloxane impressions were taken on the enrolled arches after the healing period. Gypsum casts were fabricated and scanned with an intraoral scanner (CIOS) and desktop scanner (MDS). Four test groups of digital models, each from CIOS, MDS, KCT, and VCT, respectively, were compared to the reference gypsum cast group. For comparison of linear measurements, intercanine and intermolar widths and left and right canine to molar lengths were measured on individual gypsum cast and digital models. All measurements were triplicated, and the averages were used for statistics.Bland–Altman plots were drawn to assess the degree of agreement between each test group with the reference gypsum cast group. A linear mixed model was used to analyze the fixed effect of the test groups compared to the reference group (α=0.05).Result: The Bland–Altman plots showed that the bias of each test group was –0.07 mm for CIOS, –0.07 mm for MDS, –0.21 mm for VCT, and –0.25 mm for KCT. The linear mixed model did not show significant differences between the test and reference groups (P>0.05).
Conclusion
The linear distances measured on the digital models created from CIOS, MDS, and two CBCT systems showed slightly larger than the references but clinically acceptable reproducibility for diagnosis and treatment planning.reproducibility for diagnosis and treatment planning.plots showed that the bias of each test group was –0.07 mm for CIOS, –0.07 mm for MDS,
10.Validation Study of the Official Korean Version of the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale
Jinse PARK ; Seong-Beom KOH ; Kyum-Yil KWON ; Sang Jin KIM ; Jae Woo KIM ; Joong-Seok KIM ; Kun-Woo PARK ; Jong Sam PAIK ; Young H. SOHN ; Jin-Young AHN ; Eungseok OH ; Jinyoung YOUN ; Ji-Young LEE ; Phil Hyu LEE ; Wooyoung JANG ; Han-Joon KIM ; Beom Seok JEON ; Sun Ju CHUNG ; Jin Whan CHO ; Sang-Myung CHEON ; Suk Yun KANG ; Mee Young PARK ; Seongho PARK ; Young Eun HUH ; Seok Jae KANG ; Hee-Tae KIM
Journal of Clinical Neurology 2021;17(3):501-501

Result Analysis
Print
Save
E-mail