1.Research progress on Kaposi sarcoma after solid organ transplantation
Organ Transplantation 2025;16(1):169-173
Kaposi sarcoma is an endothelial cell-derived malignant tumor caused by latent infection with human herpesvirus 8 (HHV-8) and reactivation under host immunosuppression. Solid organ transplant recipients are a high-risk group for Kaposi sarcoma. Compared with non-organ transplant recipients, post-transplant Kaposi sarcoma is often more aggressive and visceral involvement is more common. However, due to the relative rarity of Kaposi sarcoma after transplantation, routine pre-transplant serological screening for HHV-8 antibodies in donors and recipients and post-transplant prophylaxis for high-risk groups have not yet been carried out. And there is a lack of experience in the diagnosis and treatment of post-transplant Kaposi sarcoma. This article reviews the epidemiology, clinical manifestations, pathogenesis, diagnosis and treatment experience of Kaposi sarcoma in solid organ transplant recipients in recent years, aiming to attract the attention of transplant physicians and provide a reference for the diagnosis and treatment of this disease.
2.Dimethyl fumarate alleviates DEHP-induced intrahepatic cholestasis in maternal rats during pregnancy through NF-κB/NLRP3 signaling pathway
Yue Jiang ; Yun Yu ; Lun Zhang ; Qianqian Huang ; Wenkang Tao ; Mengzhen Hou ; Fang Xie ; Xutao Ling ; Jianqing Wang
Acta Universitatis Medicinalis Anhui 2025;60(1):117-123
Objective :
To investigate the protective effect of dimethyl fumarate(DMF) on maternal intrahepatic cholestasis(ICP) during pregnancy induced by di(2-ethylhexyl) phthalate(DEHP) exposure and its mechanism.
Methods :
Thirty-two 8-week-old female institute of cancer research(ICR) mice were randomly divided into 4 groups: Ctrl group, DEHP group, DMF group and DEHP+DMF group. DEHP and DEHP+DMF groups were treated with DEHP(200 mg/kg) by gavage every morning at 9:00 a.m. DMF and DEHP+DMF groups were treated with DMF(150 mg/kg) from day 13 to day 16 of gestation by gavage. After completion of gavage on day 16 of pregnancy, maternal blood, maternal liver, placenta, and amniotic fluid were collected from pregnant mice after a six-hour abrosia. The body weight of the mother rats and the body weight of the fetus rats were sorted and analyzed; the levels of total bile acid(TBA), alkaline phosphatase(ALP), aspartate aminotransferase/alanine aminotransferase(AST/ALT) in serum and TBA in liver, amniotic fluid and placenta were detected by biochemical analyzer; HE staining was used to observe the pathological changes of liver tissue; Quantitative reverse transcription PCR(RT-qPCR) was used to detect the expression levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-6, IL-1, IL-18 and NOD-like receptor thermal protein domain associated protein 3(NLRP3) in the liver; Western blot was used to detect the expression of the nuclear factor KappaB(NF-κB) and NLRP3.
Results :
Compared with the control group, the body weight of the DEHP-treated dams and pups decreased(P<0.05); the levels of TBA, ALP, AST/ALT in the serum of dams and the levels of TBA in the liver, amniotic fluid, and placenta of dams increased(P<0.05); the histopathological results showed that liver tissue was damaged, bile ducts were deformed, and there was inflammatory cell infiltration around them; the levels of inflammation-related factors TNF-α, IL-6, IL-1, IL-18 and NLRP3 transcription in maternal liver increased(P<0.05); the expression of NF-κB and NLRP3 protein in maternal liver significantly increased( P<0. 05). Compared with the DEHP group,the body weight of both dams and fetuses significantly increased in DEHP + DMF group( P<0. 05); the levels of TBA,ALP,AST/ALT in the serum of dams and amniotic fluid of fetuses decreased( P<0. 05); the degree of liver lesions was improved; the transcription levels of inflammation-related factors TNF-α,IL-6,IL-1,IL-18 and NLRP3 in maternal liver decreased( P<0. 05); the expression of NF-κB and NLRP3 protein in maternal liver significantly decreased( P<0. 05).
Conclusion
DMF can effectively protect the DEHP exposure to lead to female ICP,and its mechanism may be through inhibiting the NF-κB/NLRP3 pathway and reducing liver inflammation.
3.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
4.Analysis of Potential Active Components and Molecular Mechanism of Baoxin Granules Regulating Ferroptosis in Treatment of Heart Failure
Yu CHEN ; Maolin WANG ; Yun WANG ; Yifan ZHAO ; Jing XU ; Hongwei WU ; Fang WANG ; Xiaoang ZHAO ; Youming LI ; Jixiang TIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):202-209
ObjectiveBased on ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), network pharmacology, molecular docking and cell experiments, the active ingredients, possible targets and molecular mechanisms of Baoxin granules(BXG) regulating ferroptosis in the treatment of heart failure(HF) were explored. MethodsBXG intestinal absorption fluid was prepared by everted gut sac and the chemical composition contained therein were identified by UPLC-Q-TOF-MS. According to the obtained components, the potential targets of BXG were predicted, and the HF-related targets and related genes of ferroptosis were retrieved at the same time, and the intersecting targets were obtained by Venn diagram. In addition, the protein-protein interaction(PPI) network and the component-target network were constructed, and the core components and core targets were obtained by topological analysis. Then Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis were performed on the core targets, and molecular docking validation of the key targets and main components was carried out by AutoDockTools 1.5.7. H9c2 cells were used to establish a oxygen-glucose deprivation model, and the protective effect of BXG on cells was investigated by detecting cell viability, cell survival rate and reactive oxygen species(ROS) level. The protein expression levels of signal transducer and activator of transcription 3(STAT3), phosphorylation(p)-STAT3 and glutathione peroxidase 4(GPX4) were detected by Western blot to clarify the regulatory effect of BXG on ferroptosis. ResultsA total of 61 chemical components in BXG intestinal absorption fluid were identified, and network pharmacology obtained 27 potential targets of BXG for the treatment of HF, as well as 139 signaling pathways. BXG may act on core targets such as STAT3, tumor protein p53(TP53), epidermal growth factor receptor(EGFR), JUN and prostaglandin-endoperoxide synthase 2(PTGS2) through core components such as glabrolide and limonin, which in turn intervene in lipid and atherosclerosis, phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt), endocrine resistance and other signaling pathways to exert therapeutic effects on HF. Molecular docking showed that the docking results of multiple groups of targets and compounds were good. In vitro cell experiments showed that compared with the blank group, the cell viability and survival rate of the model group were significantly decreased, the level of ROS was significantly increased(P<0.01), the expression levels of STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 proteins were significantly decreased(P<0.05, P<0.01). Compared with the model group, the cell viability and survival rate of the BXG group were significantly increased, the ROS level was significantly decreased(P<0.01), the STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 protein levels were significantly increased(P<0.05, P<0.01). ConclusionBXG may inhibit the occurrence of ferroptosis by up-regulating the expression of STAT3 and GPX4, thus exerting a therapeutic effect on HF, and flavonoids may be the key components of this role.
5.Analysis of Potential Active Components and Molecular Mechanism of Baoxin Granules Regulating Ferroptosis in Treatment of Heart Failure
Yu CHEN ; Maolin WANG ; Yun WANG ; Yifan ZHAO ; Jing XU ; Hongwei WU ; Fang WANG ; Xiaoang ZHAO ; Youming LI ; Jixiang TIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):202-209
ObjectiveBased on ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), network pharmacology, molecular docking and cell experiments, the active ingredients, possible targets and molecular mechanisms of Baoxin granules(BXG) regulating ferroptosis in the treatment of heart failure(HF) were explored. MethodsBXG intestinal absorption fluid was prepared by everted gut sac and the chemical composition contained therein were identified by UPLC-Q-TOF-MS. According to the obtained components, the potential targets of BXG were predicted, and the HF-related targets and related genes of ferroptosis were retrieved at the same time, and the intersecting targets were obtained by Venn diagram. In addition, the protein-protein interaction(PPI) network and the component-target network were constructed, and the core components and core targets were obtained by topological analysis. Then Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis were performed on the core targets, and molecular docking validation of the key targets and main components was carried out by AutoDockTools 1.5.7. H9c2 cells were used to establish a oxygen-glucose deprivation model, and the protective effect of BXG on cells was investigated by detecting cell viability, cell survival rate and reactive oxygen species(ROS) level. The protein expression levels of signal transducer and activator of transcription 3(STAT3), phosphorylation(p)-STAT3 and glutathione peroxidase 4(GPX4) were detected by Western blot to clarify the regulatory effect of BXG on ferroptosis. ResultsA total of 61 chemical components in BXG intestinal absorption fluid were identified, and network pharmacology obtained 27 potential targets of BXG for the treatment of HF, as well as 139 signaling pathways. BXG may act on core targets such as STAT3, tumor protein p53(TP53), epidermal growth factor receptor(EGFR), JUN and prostaglandin-endoperoxide synthase 2(PTGS2) through core components such as glabrolide and limonin, which in turn intervene in lipid and atherosclerosis, phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt), endocrine resistance and other signaling pathways to exert therapeutic effects on HF. Molecular docking showed that the docking results of multiple groups of targets and compounds were good. In vitro cell experiments showed that compared with the blank group, the cell viability and survival rate of the model group were significantly decreased, the level of ROS was significantly increased(P<0.01), the expression levels of STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 proteins were significantly decreased(P<0.05, P<0.01). Compared with the model group, the cell viability and survival rate of the BXG group were significantly increased, the ROS level was significantly decreased(P<0.01), the STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 protein levels were significantly increased(P<0.05, P<0.01). ConclusionBXG may inhibit the occurrence of ferroptosis by up-regulating the expression of STAT3 and GPX4, thus exerting a therapeutic effect on HF, and flavonoids may be the key components of this role.
6.PES1 Repression Triggers Ribosomal Biogenesis Impairment and Cellular Senescence Through p53 Pathway Activation
Chang-Jian ZHANG ; Yu-Fang LI ; Feng-Yun WU ; Rui JIN ; Chang NIU ; Qi-Nong YE ; Long CHENG
Progress in Biochemistry and Biophysics 2025;52(7):1853-1865
ObjectiveThe nucleolar protein PES1 (Pescadillo homolog 1) plays critical roles in ribosome biogenesis and cell cycle regulation, yet its involvement in cellular senescence remains poorly understood. This study aimed to comprehensively investigate the functional consequences of PES1 suppression in cellular senescence and elucidate the molecular mechanisms underlying its regulatory role. MethodsInitially, we assessed PES1 expression patterns in two distinct senescence models: replicative senescent mouse embryonic fibroblasts (MEFs) and doxorubicin-induced senescent human hepatocellular carcinoma HepG2 cells. Subsequently, PES1 expression was specifically downregulated using siRNA-mediated knockdown in these cell lines as well as additional relevant cell types. Cellular proliferation and senescence were assessed by EdU incorporation and SA-β-gal staining assays, respectively. The expression of senescence-associated proteins (p53, p21, and Rb) and SASP factors (IL-6, IL-1β, and IL-8) were analyzed by Western blot or qPCR. Furthermore, Northern blot and immunofluorescence were employed to evaluate pre-rRNA processing and nucleolar morphology. ResultsPES1 expression was significantly downregulated in senescent MEFs and HepG2 cells. PES1 knockdown resulted in decreased EdU-positive cells and increased SA‑β‑gal-positive cells, indicating proliferation inhibition and senescence induction. Mechanistically, PES1 suppression activated the p53-p21 pathway without affecting Rb expression, while upregulating IL-6, IL-1β, and IL-8 production. Notably, PES1 depletion impaired pre-rRNA maturation and induced nucleolar stress, as evidenced by aberrant nucleolar morphology. ConclusionOur findings demonstrate that PES1 deficiency triggers nucleolar stress and promotes p53-dependent (but Rb-independent) cellular senescence, highlighting its crucial role in maintaining nucleolar homeostasis and regulating senescence-associated pathways.
7.Analysis of The Application and Prospects of CRISPR-based RNA Detection Technology in Forensic Science
Yun FANG ; Xian-Miao WANG ; Wei XIE ; Qi-Fan SUN
Progress in Biochemistry and Biophysics 2025;52(10):2602-2613
The emergence of clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated proteins (Cas) system represents a revolutionary paradigm shift in molecular diagnostics, offering transformative potential for RNA analysis within the rigorous demands of forensic science. Conventional forensic RNA detection methodologies, such as reverse transcription-quantitative polymerase chain reaction (RT-qPCR) or microarray analysis, are significantly hampered by inherent limitations including complex, multi-step protocols requiring sophisticated laboratory infrastructure, pronounced susceptibility to inhibitors prevalent in complex forensic matrices (e.g., humic acids, heme, indigo dyes), and often inadequate sensitivity for trace or degraded samples typical of crime scenes, thereby failing to meet the critical operational imperatives of forensic practice: rapidity, high specificity, sensitivity, portability, and robustness against interference. This review posits that CRISPR-Cas-based RNA detection technology provides a groundbreaking solution by leveraging the programmable, sequence-specific recognition conferred by the synergistic interaction between a designed guide RNA (gRNA) and Cas effector proteins (e.g., Cas12a, Cas13a, Cas14). Upon target RNA binding, specific Cas enzymes undergo conformational activation, exhibiting collateral cleavage activity―a unique catalytic amplification mechanism where the enzyme non-specifically cleaves surrounding reporter molecules, enabling ultra-high sensitivity. To further enhance detection limits, CRISPR-Cas systems are strategically integrated with isothermal pre-amplification techniques like recombinase polymerase amplification (RPA) or loop-mediated isothermal amplification (LAMP), which efficiently amplify target RNA at constant temperatures, eliminating the need for thermal cyclers. This powerful cascade―isothermal pre-amplification followed by CRISPR-mediated sequence-specific recognition and collateral signal amplification―achieves exceptional sensitivity, often down to the single-molecule (attomolar) level, while drastically reducing analysis time to potentially 30-60 min. Crucially, the compatibility of CRISPR-Cas detection with simple, equipment-free readout systems, such as lateral flow strips (LFS) for visual colorimetric results or portable fluorescence/electrochemical sensors, facilitates true point-of-need (PON) forensic analysis directly at crime scenes, morgues, or field labs. This enables rapid applications like specific body fluid identification (e.g., distinguishing menstrual blood via miRNA, identifying saliva via mRNA), post-mortem interval (PMI) estimation through RNA degradation/expression patterns, donor age inference via age-related RNA markers, tissue identification, and microbial forensics, thereby accelerating investigative leads, minimizing sample degradation risks, and optimizing resource allocation. However, significant challenges impede widespread adoption, including persistent environmental interference inhibiting enzymes, fluctuations in Cas/amplification enzyme activity affecting reproducibility, a critical lack of standardized protocols and validated quality assurance/quality control (QA/QC) frameworks essential for forensic reliability and court admissibility, and current limitations in multiplex detection capability. Consequently, future research must prioritize overcoming multiplexing bottlenecks for comprehensive analysis, enhancing system robustness through Cas protein engineering and optimized reagents, developing fully integrated, sample-to-answer microfluidic or lateral flow devices for user-friendly field deployment, and collaboratively establishing universally accepted validation guidelines, performance standards, and stringent QA/QC procedures. Furthermore, the urgent development of clear ethical guidelines governing the use of this highly sensitive technology, particularly concerning RNA data privacy and potential misuse, is imperative. This review systematically outlines the principles, forensic applications, current limitations, and future trajectories of CRISPR-RNA detection, with the authors’ conviction that focused efforts addressing these challenges will translate this technology into a cornerstone of next-generation forensic practice, driving unprecedented efficiency and innovation in field investigations and laboratory analysis to enhance justice delivery.
8.Discussion of the methodology and implementation steps for assessing the causality of adverse event
Hong FANG ; Shuo-Peng JIA ; Hai-Xue WANG ; Xiao-Jing PEI ; Min LIU ; An-Qi YU ; Ling-Yun ZHOU ; Fang-Fang SHI ; Shu-Jie LU ; Shu-Hang WANG ; Yue YU ; Dan-Dan CUI ; Yu TANG ; Ning LI ; Ze-Huai WEN
The Chinese Journal of Clinical Pharmacology 2024;40(2):299-304
The assessment of adverse drug events is an important basis for clinical safety evaluation and post-marketing risk control of drugs,and its causality assessment is gaining increasing attention.The existing methods for assessing the causal relationship between drugs and the occurrence of adverse reactions can be broadly classified into three categories:global introspective methods,standardized methods,and probabilistic methods.At present,there is no systematic introduction of the operational details of the various methods in the domestic literature.This paper compares representative causality assessment methods in terms of definition and concept,methodological steps,industry evaluation and advantages and disadvantages,clarifies the basic process of determining the causality of adverse drug reactions,and discusses how to further improve the adverse drug reaction monitoring and evaluation system,with a view to providing a reference for drug development and pharmacovigilance work in China.
9.Bioequivalence of amoxicillin clavulanate potassium tablet in healthy volunteers
Yi-Ting HU ; Yu-Fang XU ; Wan-Jun BAI ; Hao-Jing SONG ; Cai-Yun JIA ; Shao-Chun CHEN ; Zhan-Jun DONG
The Chinese Journal of Clinical Pharmacology 2024;40(3):419-424
Objective To evaluate the bioequivalence of test product and reference product in a single dose of amoxicillin clavulanate potassium tablet under fasting and fed conditions in healthy volunteers.Methods An open label,randomized,single dose,four-period,crossover bioequivalence study was designed.Fasting and postprandial tests were randomly divided into 2 administration sequence groups according to 1:1 ratio,amoxicillin clavulanate potassium tablet test product or reference product 375 mg,oral administration separately,liquid chromatography tanden mass spectrometry was applied to determine the concentration of amoxicillin and clavulanate potassium in plasma of healthy subjects after fasting or fed administration,while Phoenix WinNonlin 8.2 software were used for pharmacokinetics(PK)parameters calculation and bioequivalence analysis.Results Healthy subjects took the test product and the reference product under fasting condition,the main PK parameters of amoxicillin are as follows:Cmax were(5 075.57±1 483.37)and(5 119.86±1 466.73)ng·mL-1,AUC0_twere(1.32 × 104±2 163.76)and(1.30 × 104±1 925.11)ng·mL-1,AUC0-∞were(1.32 × 104±2 175.40)and(1.31 ×104±1 935.86)ng·mL-1;the main PK parameters of clavulanic acid are as follows:Cmax were(3 298.27±1 315.23)and(3 264.06±1 492.82)ng·mL-1,AUC0-twere(7 690.06±3 053.40)and(7 538.39±3 155.89)ng·mL-1,AUC0-∞were(7 834.81±3 082.61)and(7 671.67±3 189.31)ng·mL-1;the 90%confidence intervals of Cmax,AUC0-tand AUC0-∞ after logarithmic conversion of amoxicillin and clavulanate potassium of the two products were all within 80.00%-125.00%.Healthy subjects took the test and reference product under fed condition,the main PK parameters of amoxicillin are as follows:Cmax were(4 514.08±1 324.18)and(4 602.82±1 366.48)ng·mL-1,AUC0-twere(1.15 × 104±1 637.95)and(1.15 × 104±1 665.69)ng·mL-1,AUC0-∞ were(1.16 × 104±1 646.26)and(1.15 × 104±1 607.20)ng·mL-1;the main PK parameters of clavulanic acid are as follows:Cmax were(2 654.75±1 358.29)and(2 850.51±1 526.31)ng·mL-1,AUC0-twere(5 882.82±2 930.06)and(6 161.28±3 263.20)ng·mL-1,AUC0-∞ were(6 022.70±2 965.05)and(6 298.31±3 287.63)ng·mL-1;the 90%confidence intervals of Cmax,AUC0-t and AUC0-∞ after logarithmic conversion of amoxicillin and clavulanate potassium of the two products were all within 80.00%-125.00%.Conclusion The two formulations were bioequivalent to healthy adult volunteers under fasting and fed conditions.
10.Effects of radiation on pharmacokinetics
Jie ZONG ; Hai-Hui ZHANG ; Gui-Fang DOU ; Zhi-Yun MENG ; Ruo-Lan GU ; Zhuo-Na WU ; Xiao-Xia ZHU ; Xuan HU ; Hui GAN
The Chinese Journal of Clinical Pharmacology 2024;40(13):1996-2000
Radiation mainly comes from medical radiation,industrial radiation,nuclear waste and atmospheric ultraviolet radiation,etc.,radiation is divided into ionizing radiation and non-ionizing radiation.Studying the effects of ionizing and non-ionizing radiation on drug metabolism,understanding the absorption and distribution of drugs in the body after radiation and the speed of elimination under radiation conditions can provide reasonable guidance for clinical medication.This article reviews the effects of radiation on the pharmacokinetics of different drugs,elaborates the changes of different pharmacokinetics under radiation state,and discusses the reasons for the changes.


Result Analysis
Print
Save
E-mail