1.Research progress on impacts of air pollutants, gut microbiota, and seminal microbiota on semen quality
Wenchao XIA ; Jiahua SUN ; Yuya JIN ; Ruixin LUO ; Ruyan YAN ; Yuming GUI ; Yongbin WANG ; Fengquan ZHANG ; Wei WU ; Weidong WU ; Huijun LI
Journal of Environmental and Occupational Medicine 2025;42(8):1003-1008
In recent years, China has been facing the dual challenges of declining fertility rates and births, with male reproductive health issues, especially the decline in semen quality, identified as a pivotal contributor to this phenomenon. Meanwhile, accumulating evidence indicates that air pollutants, an increasingly severe environmental problem, can damage semen quality not only directly through their biological toxicity but also indirectly by disrupting the composition of microbial communities in the gut and semen, thereby dysregulating immune function, endocrine homeostasis, and oxidative stress responses. The gut microbiota and semen microbiota, as important components of the human microecosystem, play crucial roles in maintaining reproductive health. This article comprehensively reviewed the research progress on the potential effects of air pollutants (particulate matter and gaseous pollutants), gut microbiota, and semen microbiota on semen quality. Specifically, it elucidated the mechanisms of interaction between these factors and explored how they affect male fertility.
2.Metagenomics reveals an increased proportion of an Escherichia coli-dominated enterotype in elderly Chinese people.
Jinyou LI ; Yue WU ; Yichen YANG ; Lufang CHEN ; Caihong HE ; Shixian ZHOU ; Shunmei HUANG ; Xia ZHANG ; Yuming WANG ; Qifeng GUI ; Haifeng LU ; Qin ZHANG ; Yunmei YANG
Journal of Zhejiang University. Science. B 2025;26(5):477-492
Gut microbial communities are likely remodeled in tandem with accumulated physiological decline during aging, yet there is limited understanding of gut microbiome variation in advanced age. Here, we performed a metagenomics-based enterotype analysis in a geographically homogeneous cohort of 367 enrolled Chinese individuals between the ages of 60 and 94 years, with the goal of characterizing the gut microbiome of elderly individuals and identifying factors linked to enterotype variations. In addition to two adult-like enterotypes dominated by Bacteroides (ET-Bacteroides) and Prevotella (ET-Prevotella), we identified a novel enterotype dominated by Escherichia (ET-Escherichia), whose prevalence increased in advanced age. Our data demonstrated that age explained more of the variance in the gut microbiome than previously identified factors such as type 2 diabetes mellitus (T2DM) or diet. We characterized the distinct taxonomic and functional profiles of ET-Escherichia, and found the strongest cohesion and highest robustness of the microbial co-occurrence network in this enterotype, as well as the lowest species diversity. In addition, we carried out a series of correlation analyses and co-abundance network analyses, which showed that several factors were likely linked to the overabundance of Escherichia members, including advanced age, vegetable intake, and fruit intake. Overall, our data revealed an enterotype variation characterized by Escherichia enrichment in the elderly population. Considering the different age distribution of each enterotype, these findings provide new insights into the changes that occur in the gut microbiome with age and highlight the importance of microbiome-based stratification of elderly individuals.
Aged
;
Aged, 80 and over
;
Female
;
Humans
;
Male
;
Middle Aged
;
Bacteroides
;
China
;
Diabetes Mellitus, Type 2/microbiology*
;
Escherichia coli/classification*
;
Gastrointestinal Microbiome/genetics*
;
Metagenomics
;
East Asian People

Result Analysis
Print
Save
E-mail