1.Chain mediation role of career development planning and career success in the relationship between nurses' professional values and occupational embeddedness
Miaomiao WU ; Xuexue XU ; Juanjuan MAO ; Yumei CHEN ; Zhangying CAI ; Mi SHI
Chinese Journal of Modern Nursing 2024;30(34):4751-4755
Objective:To explore the chain mediation role of career development planning and career success in the relationship between nurses' professional values and occupational embeddedness.Methods:From February to March 2024, a convenience sampling method was used to select 763 nurses from ClassⅢ Grade A hospitals in Wenzhou as research subjects. Data were collected using a General Information Questionnaire, the Occupational Embeddedness Scale for Nurses (OESN), the Nursing Professional Values Scale-Revised (NPVS-R), the Nurses' Career Planning Questionnaire (NCPQ), and the Career Success Scale for Nurses (CSSN). Pearson correlation analysis was performed to examine the correlations among the scores of OESN, NPVS-R, NCPQ, and CSSN. The AMOS 21.0 software was used to construct a structural equation model to explore the chain mediation role of career development planning and career success in the relationship between nurses' professional values and occupational embeddedness.Results:A total of 763 questionnaires were collected, with 749 valid responses, resulting in an effective recovery rate of 98.17%. The average scores for the 749 nurses were as follows: OESN (60.29±7.65), NPVS-R (108.99±11.82), NCPQ (42.98±4.44), CSSN (73.57±8.34). All four scale scores were positively correlated with each other ( P<0.05). The chain mediation effect of career development planning and career success in the relationship between nurses' professional values and occupational embeddedness was established, with the total indirect effect accounting for 46.04% (0.302/0.656) of the total effect and the chain mediation effect of career development planning and career success accounting for 10.21% (0.067/0.656) . Conclusions:The level of occupational embeddedness among nurses needs further improvement. Nurses' professional values not only directly influence their level of occupational embeddedness but also affect their career development planning, which in turn impacts their career success, ultimately exerting an indirect effect on occupational embeddedness. Nursing managers should strengthen nurses' professional values, assist them in formulating clear career development plans, and provide timely feedback and recognition of career success.
2.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
CAI Dongxuan ; LI Yi ; WANG Lan ; ZHANG Yan ; LI Guangwen ; ZHANG Yumei
Journal of Prevention and Treatment for Stomatological Diseases 2024;32(3):169-177
Objective:
To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts (HGFs) and to provide experimental evidence for surface modification of implant abutments.
Methods:
The samples were divided into an NC group (negative control, no other treatment on a smooth surface), an NM-1 group (nanomesh-1, electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage), and an NM-2 group (nanomesh-2, electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage). The surface morphologies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy (SEM). The surface hydrophilicities of the samples were measured with a contact angle measuring instrument. The proliferation of HGFs on the different samples were evaluated with CCK-8, and the expression of adhesion-related genes, including collagen Ⅰ (COL1A1), collagen Ⅲ (COL3A1), fibronectin 1 (FN1), focal adhesion kinase (FAK), vinculin (VCL), integrin α2 (ITGA2), and integrin β1 (ITGB1), on the different samples was measured with qRT-PCR. The expression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy (CLSM) after immunofluorescent staining. Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.
Results:
SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups, with grid diameters of approximately 30 nm for the NM-1 group and approximately 150 nm for the NM-2 group. Compared with that of the NC group, the water contact angles of the NM-1 group and NM-2 groups were significantly lower (P<0.000 1). Cell proliferation in the NM-1 group was significantly greater than that in the NC group (P<0.01). Moreover, there was no significant difference in the water contact angles or cell proliferation between the NM-1 group and the NM-2 group. SEM revealed that HGFs were adhered well to the surfaces of all samples, while the HGFs in the NM-1 and NM-2 groups showed more extended areas, longer morphologies, and more developed pseudopodia than did those in the NC group after 24 h. qRT-PCR revealed that the expression levels of the adhesion-related genes COL1A1, COL3A1, FN1, FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups (P<0.01). The expression of vinculin protein in the NM-1 group was the highest, and the number of focal adhesions was greatest in the NM-1 group (P<0.01). The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers (P<0.000 1).
Conclusion
The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion, proliferation, collagen fiber secretion and syntheses of HGFs, and electrochemical dealloying of Ti6Al4V with a grid diameter of approximately 30 nm obviously promoted HGF formation.
3.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
4.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
5.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
6.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
7.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
8.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
9.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.
10.Effect of electrochemically dealloying Ti6Al4V abutments on human gingival fibroblasts
Dongxuan CAI ; Yi LI ; Lan WANG ; Yan ZHANG ; Guangwen LI ; Yumei ZHANG
Journal of Prevention and Treatment for Stomatological Diseases 2024;(3):169-177
Objective To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts(HGFs)and to provide experimental evidence for surface modification of implant abutments.Methods The samples were divided into an NC group(negative control,no other treatment on a smooth surface),an NM-1 group(nanomesh-1,electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage),and an NM-2 group(nanomesh-2,electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage).The surface morpholo-gies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy(SEM).The surface hydrophilicities of the samples were measured with a contact angle measuring instrument.The prolif-eration of HGFs on the different samples were evaluated with CCK-8,and the expression of adhesion-related genes,in-cluding collagen Ⅰ(COL1A1),collagen Ⅲ(COL3A1),fibronectin 1(FN1),focal adhesion kinase(FAK),vinculin(VCL),integrin α2(ITGA2),and integrin β1(ITGB1),on the different samples was measured with qRT-PCR.The ex-pression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy(CLSM)after immuno-fluorescent staining.Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.Results SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups,with grid diameters of approximately 30 nm for the NM-1 group and approxi-mately 150 nm for the NM-2 group.Compared with that of the NC group,the water contact angles of the NM-1 group and NM-2 groups were significantly lower(P<0.000 1).Cell proliferation in the NM-1 group was significantly greater than that in the NC group(P<0.01).Moreover,there was no significant difference in the water contact angles or cell prolifer-ation between the NM-1 group and the NM-2 group.SEM revealed that HGFs were adhered well to the surfaces of all samples,while the HGFs in the NM-1 and NM-2 groups showed more extended areas,longer morphologies,and more de-veloped pseudopodia than did those in the NC group after 24 h.qRT-PCR revealed that the expression levels of the ad-hesion-related genes COL1A1,COL3A1,FN1,FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups(P<0.01).The expression of vinculin protein in the NM-1 group was the highest,and the num-ber of focal adhesions was greatest in the NM-1 group(P<0.01).The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers(P<0.000 1).Conclusion The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion,proliferation,colla-gen fiber secretion and syntheses of HGFs,and electrochemical dealloying of Ti6Al4V with a grid diameter of approxi-mately 30 nm obviously promoted HGF formation.


Result Analysis
Print
Save
E-mail