1.Modulation of colonic DNA methyltransferase by mild moxibustion and electroacupuncture in ulcerative colitis TET2 knockout mice
Gege FENG ; Yue ZHANG ; Huangan WU ; Lu ZHU ; Hongxiao XU ; Zhe MA ; Yan HUANG
Digital Chinese Medicine 2025;8(1):100-110
Objective:
To investigate the mechanism of in alleviating colonic mucosal inflammation in ten-eleven translocation (TET) protein 2 gene knockout (TET2-/-) mice with ulcerative colitis (UC) by regulating DNA methyltransferase (DNMT) and DNA hydroxymethylase.
Methods:
Male specific pathogen-free (SPF) grade C57BL/6J wild-type (WT) mice (n = 8) and TET2-/- mice (n = 20) were used to establish UC models by freely drinking 3% dextran sulfate sodium solution for 7 d. After UC model validation through histopathological examination in two mice from each type, the remaining mice were divided into four groups (n = 6 in each group): WT model (WT + UC), TET2-/- model (TET2-/- + UC), TET2-/- mild moxibustion (TET2-/- + MM), and TET2-/- electroacupuncture (TET2-/- + EA) groups. TET2-/- + MM group received mild moxibustion on Tianshu (ST25) and Qihai (CV6) for 10 min daily for 7 d. The TET2-/- + EA group also applied electroacupuncture (1 mA, 2/100 Hz) at the same acupoints for 10 min daily for 7 d. The disease activity index (DAI) scores of each group of mice were accessed daily. The colon lengths of mice in groups were measured following intervention. The pathological changes in the colon tissues were observed with hematoxylin and eosin (HE) staining. The concentrations of interleukin (IL)-6, C-C motif chemokine 17 (CCL17), and C-X-C motif chemokine ligand 10 (CXCL10) in serum were detected by enzyme-linked immunosorbent assay (ELISA). The expression of DNMT proteins (DNMT1, DNMT3A, and DNMT3B) in the colon tissues was detected by immunohistochemistry. The expression of 5-methylcytosine (5-mC), 5-hydroxymethylcytosine (5-hmC), histone deacetylase 2 (HDAC2), and DNA hydroxymethylase family proteins (TET 1 and TET3) was detected using immunofluorescence, which also determined the co-localization of TET1 and IL-6 protein.
Results:
Compared with WT + UC group, TET2-/- + UC group exhibited significantly higher DAI scores and shorter colon lengths (P < 0.01). Both mild moxibustion and electroacupuncture significantly decreased DAI scores and ameliorated colon shortening in TET2-/- mice (P < 0.001). Histopathological scores of TET2-/- + UC mice were significantly higher than those of WT + UC group (P < 0.001) and were significantly reduced after both mild moxibustion and electroacupuncture interventions (P < 0.001). Serum levels of IL-6, CCL17, and CXCL10 were significantly elevated in TET2-/- + UC group compared with WT + UC group (P < 0.001). Mild moxibustion significantly reduced IL-6, CCL17, and CXCL10 levels (P < 0.001, P < 0.001, and P < 0.01, respectively), while electroacupuncture also significantly reduced IL-6, CCL17, and CXCL10 levels (P < 0.05, P < 0.01, and P < 0.01, respectively). TET2-/- + UC mice showed increased expression levels of DNMT1, DNMT3A , DNMT3B, and 5-mC (P < 0.05, P < 0.01 and P < 0.001, respectively), with decreased expression levels of TET1, TET3, 5-hmC, and HDAC2 (P < 0.001). Mild moxibustion significantly reduced DNMT1, DNMT3B, and 5-mC levels (P < 0.05, P < 0.01, and P < 0.001, respectively), while increasing expression levels of TET1, TET3, 5-hmC, and HDAC2 (P < 0.001, P < 0.001, P < 0.05, and P < 0.001, respectively). Electroacupuncture significantly decreased 5-mC and DNMT3B levels (P < 0.001 and P < 0.01, respectively) and increased 5-hmC and HDAC2 levels (P < 0.05 and P < 0.001, respectively), but did not significantly affect TET1 and TET3 expression (P > 0.05). Compared with TET2-/- + MM group, TET2-/- + EA group showed significantly higher 5-mC expression (P < 0.001). TET2-/- + UC group exhibited markedly increased IL-6 expression and higher co-localization of TET1 and IL-6 in mucosal epithelium, whereas minimal IL-6 expression was observed in the other groups.
Conclusion
Mild moxibustion and electroacupuncture significantly ameliorate colonic inflammation exacerbated by TET2 deficiency in UC mice via epigenetic modulation. Distinct mechanisms exist between the two interventions: mild moxibustion regulates both DNMT and hydroxymethylase, whereas electroacupuncture primarily affects DNMT.
2.Baicalein mitigates ferroptosis of neurons after subarachnoid hemorrhage
Ting ZHU ; Tingting YUE ; Yue CUI ; Yue LU ; Wei LI ; Chunhua HANG
Chinese Journal of Tissue Engineering Research 2025;29(1):52-57
BACKGROUND:Ferroptosis is a mode of programmed cell death distinct from apoptosis,necrosis,and other novel cellular deaths,which occurs mainly due to accumulated lipid peroxidation.Ferroptosis has been shown to be involved in the pathological process following subarachnoid hemorrhage.Baicalein,serving as an adept sequestered of iron,evinces its prowess by quelling lipid peroxidative cascades.Nonetheless,the enigma lingers as to whether baicalein possesses the capacity to ameliorate neuronal ferroptosis,elicited in the wake of early brain injury after subarachnoid hemorrhage. OBJECTIVE:To investigate the effect and mechanism of baicalein on neuronal ferroptosis after subarachnoid hemorrhage. METHODS:Primary neuronal cells were extracted from C57BL/6L fetal mice at 16-17 days of gestation.Hemoglobin was used to stimulate primary neuronal cells to simulate an in vitro subarachnoid hemorrhage model.The viability of primary neuronal cells treated with baicalein at concentrations of 5,15,25,50,and 100 μmol/L for 24 hours was detected by CCK-8 assay to determine the optimal concentration of baicalein.Primary neuronal cells were divided into control group,hemoglobin group,and hemoglobin+baicalein group.The levels of reactive oxygen species and malondialdehyde in cells were detected by kits.The mRNA expressions of ferroptosis-related markers PTGS2,SLC7A11,and glutathione peroxidase 4 were detected by RT-PCR.The primary neuronal cells were further divided into control group,SLC7A11 inhibitor Erastin group,hemoglobin group,hemoglobin+baicalein group,and hemoglobin+baicalein+Erastin group.The expression of the ferroptosis related markers SLC7A11 and glutathione peroxidase 4 was detected by western blot assay. RESULTS AND CONCLUSION:(1)Baicalein(25 μmol/L)was selected as the following experimental concentration.(2)Compared with the hemoglobin group,the level of malondialdehyde and the level of reactive oxygen species were significantly decreased(P<0.05)in the hemoglobin+baicalein group.(3)Compared with the hemoglobin group,the mRNA expression of PTGS2 significantly decreased,and the mRNA expression of SLC7A11 and glutathione peroxidase 4 significantly increased(P<0.000 1)in the hemoglobin+baicalein group.(4)SLC7A11 inhibitor Erastin could reverse the baicalin-improved ferroptosis effect to a certain extent(P<0.05).(5)The results showed that baicalein could alleviate the ferroptosis of neuronal cells after subarachnoid hemorrhage through the SLC7A11/GPX4 pathway.
3.Timosaponin BⅡ Combined with Icariin Maintains Osteoclast-osteoblast Coupling by Restoring Yin-Yang Balance
Zaishi ZHU ; Zeling HUANG ; Weiye CAI ; Hua CHEN ; Boen SONG ; Yue LU ; Qing LU ; Xiaofeng SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):48-57
ObjectiveTo explore the effect of timosaponin BⅡ (TBⅡ) combined with icariin (ICA) on osteoclast (OC)-osteoblast (OB) coupling and decipher the mechanism from the cellular level. MethodsThe cell counting kit-8 (CCK-8) was used to assess the effects of different concentrations of TBⅡ and different concentrations of TBⅡ+ICA on the growth of RAW264.7 cells. Soluble receptor activator of nuclear factor-κB ligand (sRANKL) was used to induce the differentiation of RAW264.7 pre-osteoclasts into osteoclasts. The cells were allocated into sRANKL, TBⅡ (1, 5, 10 μmol·L-1), and TBⅡ+ICA groups. Tartrate-resistant acid phosphatase staining was performed to assess the effects of TBⅡ and TBⅡ+ICA on osteoclast differentiation. Real-time quantitative polymerase chain reaction (Real-time PCR) was conducted to examine the effects of TBⅡ+ICA on the expression of key genes involved in osteoclast differentiation and osteoclast-derived coupling factors. The osteogenic differentiation conditioned medium mixed with osteoclast supernatant was used to induce osteogenic differentiation of MC3T3-E1 cells. Alkaline phosphatase staining and alizarin red S staining were employed to determine the effect of TBⅡ+ICA on osteogenic differentiation. Real-time PCR was employed to evaluate the effects of conditioned medium on key genes involved in osteogenic differentiation. ResultsTBⅡ at 1, 5, 10 μmol·L-1 had no significant effect on the cell survival rate. Compared with the sRANKL group, TBⅡ inhibited osteoclast differentiation in a dose-dependent manner and achieved the best effect at 10 μmol·L-1 (P<0.01). Compared with the sRANKL group, different concentrations of TBⅡ down-regulated the mRNA levels of osteoclast differentiation-related genes c-Fos, RANK, and RANKL (P<0.05). None of 10 μmol·L-1 TBⅡ, 10 μmol·L-1 TBⅡ+10-4 μmol·L-1 ICA, or 10 μmol·L-1 TBⅡ+10-3 μmol·L-1 ICA affected the viability of RAW264.7 cells. TBⅡ and/or ICA inhibited osteoclast differentiation (P<0.01), and TBⅡ + ICA had the best effect (P<0.01). Compared with the sRANKL group, TBⅡ and/or ICA down-regulated the mRNA levels of c-Fos, RANK, and RANKL (P<0.05). The single application of TBⅡ and ICA had no significant effect on the mRNA levels of Wnt10b, Cthrc1, and C3a, while TBⅡ+ICA exerted up-regulating effects (P<0.05). Compared with those in the blank group, the bone differentiation and mineralization abilities of the normal osteogenic induction group and each osteogenic induction + osteoclast supernatant group were improved (P<0.01). Compared with the blank group, the normal osteogenic induction group and the osteogenic induction + osteoclast supernatant group showed up-regulated mRNA levels of Runx2 and OCN (P<0.01). ConclusionTBⅡ+ICA can inhibit osteoclast differentiation, maintain the normal osteoclast-osteoblast coupling, and promote osteogenic differentiation.
4.Effect Mechanism and Law of Sterilization by 60Co-γ Ray Irradiation on Chemical Composition of Chinese Materia Medica: A Review
Tingting ZHU ; Jian RANG ; Rangyanpo LUO ; Rui GU ; Yue YANG ; Si LU ; Shihong ZHONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):306-314
60Co-γ ray irradiation has the unique advantages of high efficiency, strong penetration, operation at room temperature and no residue, which has been widely used in the sterilization of Chinese medicinal materials, decoction pieces, Chinese patent medicine. However, the irradiation effect may cause changes in the content of chemical components in Chinese materia medica or the emergence of new radiolysis products, leading to reduced efficacy and uncontrollable safety risks. This paper reviewed the relevant literature at home and abroad, summarized the effect of irradiation sterilization on various types of chemical compositions of Chinese medicinal materials and their preparations, and analyzed and explored the rule of change. The results showed that the content changes of various chemical components in Chinese materia medica after 60Co-γ ray irradiation sterilization varied. The contents of most flavonoids, terpenoids, phenylpropanoids and quinones decreased after irradiation, and the degree of decrease increased with the elevated irradiation dose. The contents of lignans, alkaloids, isoflavones and some terpenoids did not change significantly before and after irradiation, while the content changes of triterpenoid saponins, dihydroflavonols, chalcones, sugars and glycosides after irradiation were not yet uniform. Therefore, it is recommended to pay attention to the compositional changes of irradiated Chinese medicines, strengthen the research on the standards of irradiated Chinese medicines, and standardize the irradiation and sterilization of Chinese medicines in order to promote the healthy and rational application of irradiated Chinese medicines.
5.Vaccination against coronavirus disease 2019 in patients with pulmonary hypertension: A national prospective cohort study
Xiaohan WU ; Jingyi LI ; Jieling MA ; Qianqian LIU ; Lan WANG ; Yongjian ZHU ; Yue CUI ; Anyi WANG ; Cenjin WEN ; Luhong QIU ; Yinjian YANG ; Dan LU ; Xiqi XU ; Xijie ZHU ; Chunyan CHENG ; Duolao WANG ; Zhicheng JING
Chinese Medical Journal 2024;137(6):669-675
Background::Coronavirus disease 2019 (COVID-19) has potential risks for both clinically worsening pulmonary hypertension (PH) and increasing mortality. However, the data regarding the protective role of vaccination in this population are still lacking. This study aimed to assess the safety of approved vaccination for patients with PH.Methods::In this national prospective cohort study, patients diagnosed with PH (World Health Organization [WHO] groups 1 and 4) were enrolled from October 2021 to April 2022. The primary outcome was the composite of PH-related major adverse events. We used an inverse probability weighting (IPW) approach to control for possible confounding factors in the baseline characteristics of patients.Results::In total, 706 patients with PH participated in this study (mean age, 40.3 years; mean duration after diagnosis of PH, 8.2 years). All patients received standardized treatment for PH in accordance with guidelines for the diagnosis and treatment of PH in China. Among them, 278 patients did not receive vaccination, whereas 428 patients completed the vaccination series. None of the participants were infected with COVID-19 during our study period. Overall, 398 patients received inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine, whereas 30 received recombinant protein subunit vaccine. After adjusting for baseline covariates using the IPW approach, the odds of any adverse events due to PH in the vaccinated group did not statistically significantly increase (27/428 [6.3%] vs. 24/278 [8.6%], odds ratio = 0.72, P = 0.302). Approximately half of the vaccinated patients reported at least one post-vaccination side effects, most of which were mild, including pain at the injection site (159/428, 37.1%), fever (11/428, 2.6%), and fatigue (26/428, 6.1%). Conclusions::COVID-19 vaccination did not significantly augment the PH-related major adverse events for patients with WHO groups 1 and 4 PH, although there were some tolerable side effects. A large-scale randomized controlled trial is warranted to confirm this finding. The final approval of the COVID-19 vaccination for patients with PH as a public health strategy is promising.
6.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
7.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
8.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
9.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.
10.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.

Result Analysis
Print
Save
E-mail