1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
3.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
4.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
5.Diagnosis and treatment of colorectal liver metastases: Chinese expert consensus-based multidisciplinary team (2024 edition).
Wen ZHANG ; Xinyu BI ; Yongkun SUN ; Yuan TANG ; Haizhen LU ; Jun JIANG ; Haitao ZHOU ; Yue HAN ; Min YANG ; Xiao CHEN ; Zhen HUANG ; Weihua LI ; Zhiyu LI ; Yufei LU ; Kun WANG ; Xiaobo YANG ; Jianguo ZHOU ; Wenyu ZHANG ; Muxing LI ; Yefan ZHANG ; Jianjun ZHAO ; Aiping ZHOU ; Jianqiang CAI
Chinese Medical Journal 2025;138(15):1765-1768
6.Effect of total secondary ginsenosides on apoptosis and energy metabolism of H9c2 cells under hypoxia based on mitochondrial biogenesis.
Zhong-Jie YUAN ; Yue XIAO ; Zhen LIU ; Ai-Qun ZHANG ; Bin LI ; Shang-Xian GAO
China Journal of Chinese Materia Medica 2025;50(5):1255-1266
This study explores the effect of total secondary ginsenosides(TSG) on apoptosis and energy metabolism in H9c2 cells under hypoxia and its potential mechanisms. H9c2 cell viability was observed and the apoptosis rate was calculated to determine suitable intervention concentrations of TSG, antimycin A complex(AMA), and coenzyme Q10(CoQ10), along with the duration of hypoxia. H9c2 cells at the logarithmic phase were divided into a normal group, a model group, a TSG group, an AMA group, a TSG+AMA group, and a CoQ10 group. All groups, except the normal group, were treated with their respective intervention drugs and cultured under hypoxic conditions. Adenosine triphosphate(ATP) content and creatine kinase(CK) activity were measured using an ATP chemiluminescence assay kit and a CK colorimetric assay kit. Flow cytometry was used to assess apoptosis rates, and Western blot evaluated the expression levels of apoptosis-related proteins, including B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), cysteinyl aspartate-specific protease(caspase)-3, caspase-8, and caspase-9, as well as mitochondrial biogenesis-related proteins peroxisome proliferator-activated receptor-γ coactivator 1α(PGC-1α), estrogen-related receptor-α(ERRα), nuclear respiratory factor(NRF)-1, NRF-2, peroxisome proliferator activated receptor-α(PPARα), and Na~+-K~+-ATPase. RT-PCR was employed to analyze the mRNA expression of mitochondrial biogenesis factors, including PGC-1α, ERRα, NRF-1, NRF-2, PPARα, mitochondrial transcription factor A(TFAM), mitochondrial cytochrome C oxidase 1(COX1), and mitochondrial NADH dehydrogenase subunit 1(ND1), ND2. The selected intervention concentrations were 7.5 μg·mL~(-1) for TSG, 10 μmol·L~(-1) for AMA, and 1×10~(-4) mol·L~(-1) for CoQ10, with a hypoxia duration of 6 h. Compared with the normal group, the model group showed decreased ATP content and CK activity, increased apoptosis rates, decreased Bcl-2 expression, and increased Bax, caspase-3, caspase-8, and caspase-9 expression in H9c2 cells. Additionally, the protein and mRNA expression levels of mitochondrial biogenesis-related factors(PGC-1α, ERRα, NRF-1, NRF-2, PPARα), mRNA expression of TFAM, COX1, and ND1, ND2, and protein expression of Na~+-K~+-ATPase in mitochondrial DNA, were also reduced. In the TSG and CoQ10 groups, ATP content and CK activity increased, and apoptosis rates decreased compared with those in the model group. The TSG group showed decreased protein expression of apoptosis-related proteins Bax, caspase-3, caspase-8, and caspase-9, increased protein and mRNA expression of mitochondrial biogenesis factors PGC-1α, ERRα, NRF-1, and PPARα, and increased NRF-2 protein expression and TFAM mRNA expression in mitochondrial DNA. Conversely, in the AMA group, ATP content and CK activity decreased, the apoptosis rate increased, Bcl-2 expression decreased, and Bax, caspase-3, caspase-8, and caspase-9 expression increased, alongside reductions in PGC-1α, ERRα, NRF-1, NRF-2, PPARα protein and mRNA expression, as well as TFAM, COX1, ND1, ND2 mRNA expression and Na~+-K~+-ATPase protein expression. Compared with the TSG group, the TSG+AMA group exhibited decreased ATP content and CK activity, increased apoptosis rates, decreased Bcl-2 expression, and increased Bax, caspase-3, caspase-8, and caspase-9 expression, along with decreased PGC-1α, ERRα, NRF-1, NRF-2, and PPARα protein and mRNA expression and TFAM, COX1, and ND1, ND2 mRNA expression. Compared with the AMA group, the TSG+AMA group showed increased CK activity, decreased apoptosis rate, increased Bcl-2 expression, and decreased Bax, caspase-8, and caspase-9 expression. Additionally, the protein and mRNA expression of PGC-1α, ERRα, NRF-1, PPARα, mRNA expression of TFAM, COX1, ND1, ND2, and Na~+-K~+-ATPase protein expression increased. In conclusion, TSG enhance ATP content and CK activity and inhibit apoptosis in H9c2 cells under hypoxia, and the mechanisms may be related to the regulation of PGC-1α, ERRα, NRF-1, NRF-2, PPARα, and TFAM expression, thus promoting mitochondrial biogenesis.
Apoptosis/drug effects*
;
Ginsenosides/pharmacology*
;
Energy Metabolism/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Line
;
Cell Hypoxia/drug effects*
;
Organelle Biogenesis
;
Adenosine Triphosphate/metabolism*
;
Humans
;
Cell Survival/drug effects*
7.One-year recovery after lateral retinaculum release combined with chondroplasty in patients with lateral patellar compression syndrome.
Zhen-Long LIU ; Yi-Ting WANG ; Jin-Ming LIN ; Wu-Ji ZHANG ; Jiong-Yuan LI ; Zhi-Hui HE ; Yue-Yang HOU ; Jian-Li GAO ; Wei-Li SHI ; Yu-Ping YANG
Chinese Journal of Traumatology 2025;28(6):462-468
PURPOSE:
Lateral patellar compression syndrome (LPCS) is characterized by a persistent abnormally high stress exerted on the lateral articular surface of the patella due to lateral patellar tilt without dislocation and lateral retinaculum contracture, leading to anterior knee pain. The purpose of this study is to evaluate the efficacy and prognosis of lateral retinaculum release (LRR) combined with chondroplasty in the treatment of LPCS.
METHODS:
This retrospective study evaluated 40 patients who underwent LRR combined with chondroplasty for LPCS between 2020 and 2021. The assessment included improvement in postoperative tenderness and knee joint function. Patients were evaluated using the Lysholm, Tegner, and International Knee Documentation Committee 2000 scoring systems, as well as the visual analog scale, both preoperatively and postoperatively, with the paired comparisons analyzed using a t-test. Additionally, intraoperative observations were made regarding knee joint lesions, including cartilage damage and osteophyte formation, with analysis by the Chi-square test.
RESULTS:
The visual analog scale score for tenderness showed a significant decrease after surgery (p < 0.001). Evaluation of knee joint function also indicated significant improvements, as demonstrated by increased Lysholm, Tegner, and International Knee Documentation Committee 2000 scores postoperatively (p < 0.001, p = 0.011, p < 0.001, respectively). Furthermore, all LPCS patients included in the study presented with cartilage injuries and osteophyte formation. Significant differences were noted in the incidence of cartilage damage and osteophyte formation at different locations within the knee among patients with LPCS.
CONCLUSION
LRR combined with chondroplasty is an effective surgical approach for treating patients with LPCS, with satisfactory recovery observed at the 1-year follow-up. Additionally, the incidence of cartilage damage and osteophyte formation in LPCS patients varies significantly depending on the specific location within the knee joint.
Humans
;
Male
;
Female
;
Retrospective Studies
;
Adult
;
Middle Aged
;
Patella/surgery*
;
Knee Joint/physiopathology*
;
Recovery of Function
;
Young Adult
;
Treatment Outcome
;
Cartilage, Articular/surgery*
;
Adolescent
8.Associations of White Blood Cell, Platelet Count, Platelet-to-White Blood Cell Ratio with Muscle Mass among Community-Dwelling Older Adults in China.
Zhen Wei ZHANG ; Yu Ming ZHAO ; Hong Zhou CHEN ; Li QI ; Chen CHEN ; Jun WANG ; Wen Hui SHI ; Yue Bin LYU ; Xiao Ming SHI
Biomedical and Environmental Sciences 2025;38(6):693-705
OBJECTIVE:
This study aimed to evaluate the relationships of white blood cell (WBC) count, platelet (PLT) count, and PLT-to-WBC ratio (PWR) with muscle mass in Chinese older adults.
METHODS:
This cross-sectional analysis involved 4,033 Chinese older adults aged ≥ 65 years from the Healthy Ageing and Biomarkers Cohort Study. Muscle mass and total skeletal muscle mass index (TSMI) were measured by bioelectric impedance analysis. WBC, PLT, and PWR were measured using standard methods. Multivariate linear regression was used to examine the associations of WBC count, PLT count, and PWR with TSMI.
RESULTS:
High WBC count, PLT count, and PWR were associated with low TSMI, with coefficients of -0.0091 (95% confidence interval [ CI]: -0.0142 to -0.0041), -0.0119 (95% CI: -0.0170 to -0.0068), and -0.0051 (95% CI: -0.0102 to -0.0001). The associations between the three inflammatory indices and TSMI were linear. Stratified analyses indicated that the relationship between inflammatory markers and TSMI was more evident in male participants and in individuals aged < 80 years than in their counterparts.
CONCLUSION
Elevated WBC count, PLT count, and PWR correlated with muscle mass loss. This study highlights the importance of regular monitoring of inflammatory markers as a potential strategy for the screening and management of sarcopenia in older adults.
Humans
;
Aged
;
Male
;
Female
;
China
;
Leukocyte Count
;
Cross-Sectional Studies
;
Platelet Count
;
Aged, 80 and over
;
Muscle, Skeletal/anatomy & histology*
;
Independent Living
;
Blood Platelets
;
Leukocytes
;
Sarcopenia
9.Effectiveness of Pentavalent Rotavirus Vaccine - a Propensity Score Matched Test Negative Design Case-Control Study Using Medical Big Data in Three Provinces of China.
Yue Xin XIU ; Lin TANG ; Fu Zhen WANG ; Lei WANG ; Zhen LI ; Jun LIU ; Dan LI ; Xue Yan LI ; Yao YI ; Fan ZHANG ; Lei YU ; Jing Feng WU ; Zun Dong YIN
Biomedical and Environmental Sciences 2025;38(9):1032-1043
OBJECTIVE:
The objective of our study was to evaluate the vaccine effectiveness (VE) of the pentavalent rotavirus vaccine (RV5) among < 5-year-old children in three provinces of China during 2020-2024 via a propensity score-matched test-negative case-control study.
METHODS:
Electronic health records and immunization information systems were used to obtain data on acute gastroenteritis (AGE) cases tested for rotavirus (RV) infection. RV-positive cases were propensity score matched with RV-negative controls for age, visit month, and province.
RESULTS:
The study included 27,472 children with AGE aged 8 weeks to 4 years at the time of AGE diagnosis; 7.98% (2,192) were RV-positive. The VE (95% confidence interval, CI) of 1-2 and 3 doses of RV5 against any medically attended RV infection (inpatient or outpatient) was 57.6% (39.8%, 70.2%) and 67.2% (60.3%, 72.9%), respectively. Among children who received the 3rd dose before turning 5 months of age, 3-dose VE decreased from 70.4% (53.9%, 81.1%) (< 5 months since the 3rd dose) to 63.0% (49.1%, 73.0%) (≥ 1 year since the 3rd dose). The three-dose VE rate was 69.4% (41.3%, 84.0%) for RVGE hospitalization and 57.5% (38.9%, 70.5%) for outpatient-only medically attended RVGE.
CONCLUSION
Three-dose RV5 VE against rotavirus gastroenteritis (RVGE) in children aged < 5 years was higher than 1-2-dose VE. Three-dose VE decreased with time since the 3rd dose in children who received the 3rd dose before turning five months of age, but remained above 60% for at least one year. VE was higher for RVGE hospitalizations than for medically attended outpatient visits.
Humans
;
Rotavirus Vaccines/immunology*
;
China/epidemiology*
;
Case-Control Studies
;
Child, Preschool
;
Infant
;
Rotavirus Infections/epidemiology*
;
Male
;
Propensity Score
;
Female
;
Vaccine Efficacy
;
Gastroenteritis/virology*
;
Vaccines, Attenuated
;
Rotavirus
10.Experimental study on anti-fatigue effect of Polysaccharides of Panax notoginseng
Pan-Pan WEI ; Zi-Jun YAN ; Meng-Yue DENG ; Die XIA ; Yu-Zhen DING ; Lei ZHANG ; Tong CHEN
The Chinese Journal of Clinical Pharmacology 2024;40(1):87-91
Objective To explore the effect of Polysaccharides of Panax notoginseng(PPN)on anti-exercise fatigue in mice.Methods One hundred male KM mice were randomly divided into negative control group,positive control group and experimental-L,-M,-H groups,with 20 cases per group.Experimental-L,-M,-H groups was given 100,200,400 mg·kg-1 PPN,respectively;positive control group was given 200 mg·kg-1 vitamin C;negative control group was given 0.1 mL·10 g-1 0.9%NaCl.Five groups were gavaged once a day for 28 days.After the last administration,the loaded swimming time was measured;after 90 minutes of the unloaded swimming test,the mice were allowed to rest for 30 minutes,the levels of lactic acid(LD),blood urea nitrogen(BUN),glycogen,and malondialdehyde(MDA)were measured,the safety of PPN with organ indices and histopathology.Results LD levels in negative control group,positive control group and experimental-L,-M,-Hgroupswere(4.76±0.84),(2.86±0.34),(3.00±0.69),(2.35±0.65)and(1.39±0.48)mg·kg-1;BUN contents were(13.65±1.25),(12.55±0.91),(12.12±1.24),(11.06±1.30)and(9.85±1.05)mmol·L-1;liver glycogen contents were(3.24±0.56),(11.11±2.16),(5.61±1.41),(6.60±1.49)and(12.05±2.25)mg·g-1;MDA levels were(2.36±0.21),(1.23±0.41),(1.93±0.23),(1.73±0.21)and(1.04±0.18)mg prot·mL-1.Compared with negative control group,the differences of above indexes in the positive control group and experimental-L,-M,-H groups were statistically significant(P<0.05,P<0.01,P<0.001).Conclusion PPN can increase exercise endurance in mice and has an anti-fatigue effect.This study provides a theoretical basis for the application of PPN in the field of anti-fatigue research.

Result Analysis
Print
Save
E-mail