1.Mechanisms of puerarin-mediated lipid modulation to enhance glucose-lowering effects via hepatic ChREBP/PPARα/PPARγ in vitro.
Can CUI ; Han-Yue XIAO ; Li-Ke YAN ; Zhong-Hua XU ; Wei-Hua LIU ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(14):3951-3961
This study aims to investigate the in vitro mechanisms underlying the beneficial effects of puerarin on hepatic insulin resistance(IR) based on the carbohydrate response element-binding protein(ChREBP)/peroxisome proliferator-activated receptor(PPAR)α/PPARγ axis involved in glucose and lipid metabolism. An IR-HepG2 cell model was established by treating cells with dexamethasone for 48 h, and the cells were then treated with 10, 20, and 40 μmol·L~(-1) puerarin for 24 h. Glucose levels and output in the extracellular fluid were measured by the glucose oxidase method, while cell viability was assessed by the cell counting kit-8(CCK-8) assay. The adenosine triphosphate(ATP) content and glycogen synthesis were evaluated through chemiluminescence and periodic acid-Schiff staining, respectively. Western blot was employed to quantify the protein levels of forkhead box protein O1(FoxO1), phosphorylated forkhead box protein O1 [p-FoxO1(Ser256)], glucagon, phosphofructokinase, liver type(PFKL), pyruvate kinase L-R(PKLR), pyruvate dehydrogenase complex 1(PDHA1), insulin receptor substrate 2(IRS2), phosphatidylinositol 3-kinase p85(PI3KR1), phosphorylated protein kinase B [p-Akt(Thr308)], glycogen synthase(GYS), glycogen phosphorylase, liver type(PYGL), adiponectin(ADPN), ChREBP, PPARα, and PPARγ. Additionally, the protein levels of acetyl-CoA carboxylase 1(ACC1), phosphorylated ATP citrate lyase [p-ACLY(Ser455)], sterol regulatory element binding protein 1c(SREBP-1c), peroxisome proliferator-activated receptor gamma coactivator 1α(PGC1α), carnitine palmitoyltransferase 1α(CPT1α), and glucagon receptor(GCGR) were also determined. Immunofluorescence was employed to visualize the expression and nuclear location of ChREBP/PPARα/PPARγ. Furthermore, quantitative PCR with the antagonists GW6471 and GW9662 was employed to assess Pparα, Pparγ, and Chrebp. The findings indicated that puerarin effectively reduced both the glucose level and glucose output in the extracellular fluid of IR-HepG2 cells without obvious effect on the cell viability, and it increased intracellular glycogen and ATP levels. Puerarin down-regulated the protein levels of FoxO1 and glucagon while up-regulating the protein levels of p-FoxO1(Ser256), PFKL, PKLR, PDHA1, IRS2, PI3KR1, p-Akt(Thr308), GYS, PYGL, ADPN, ACC1, SREBP-1c, p-ACLY(Ser455), PGC1α, CPT1α, and GCGR in IR-HepG2 cells. Furthermore, puerarin up-regulated both the mRNA and protein levels of ChREBP, PPARα, and PPARγ and promoted the translocation into the nucleus. GW6471 was observed to down-regulate the expression of Pparα while up-regulating the expression of Chrebp and Pparγ. GW9662 down-regulated the expression of Pparγ while up-regulating the expression of Pparα, with no significant effect on Chrebp. In summary, puerarin activated the hepatic ChREBP/PPARα/PPARγ axis, thereby coordinating the glucose and lipid metabolism, promoting the conversion of glucose to lipids to exert the blood glucose-lowering effect.
Isoflavones/pharmacology*
;
Humans
;
PPAR gamma/genetics*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Lipid Metabolism/drug effects*
;
PPAR alpha/genetics*
;
Liver/drug effects*
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Insulin Resistance
2.Hypoglycemic effect and mechanism of berberine in vitro based on regulation of BMAL1:CLOCK complex involved in hepatic glycolysis, glucose oxidation a nd gluconeogenesis to improve energy metabolism.
Zhong-Hua XU ; Li-Ke YAN ; Wei-Hua LIU ; Can CUI ; Han-Yue XIAO ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(15):4293-4303
This paper aims to investigate the hypoglycemic effect and mechanism of berberine in improving energy metabolism based on the multi-pathway regulation of brain and muscle aromatic hydrocarbon receptor nuclear translocal protein 1(BMAL1): cyclin kaput complex of day-night spontaneous output cyclin kaput(CLOCK). The dexamethasone-induced hepatic insulin resistance(IR) HepG2 cell model was used; 0.5, 1, 5, 10, 20 μmol·L~(-1) berberine were administered at 15, 18, 21, 24, 30, 36 h. The time-dose effect of glucose content in extracellular fluid was detected by glucose oxidase method. The optimal dosage and time of berberine were determined for the follow-up study. Glucose oxidase method and chemiluminescence method were respectively performed to detect hepatic glucose output and relative content of ATP in cells; Ca~(2+), reactive oxygen species(ROS), mitochondrial structure and membrane potential were detected by fluorescent probes. Moreover, ultraviolet colorimetry method was used to detect the liver type of pyruvate kinase(L-PK) and phosphoenol pyruvate carboxykinase(PEPCK). In addition, pyruvate dehydrogenase E1 subunit α1(PDHA1), phosphate fructocrine-liver type(PFKL), forkhead box protein O1(FoxO1), peroxisome proliferator-activated receptor gamma co-activator 1α(PGC1α), glucose-6-phosphatase(G6Pase), glucagon, phosphorylated nuclear factor-red blood cell 2-related factor 2(p-Nrf2)(Ser40), heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), fibroblast growth factor 21(FGF21), uncoupled protein(UCP) 1 and UCP2 were detected by Western blot. BMAL1:CLOCK complex was detected by immunofluorescence double-staining method, combined with small molecule inhibitor CLK8. Western blot was used to detect PDHA1, PFKL, FoxO1, PGC1α, G6Pase, glucagon, Nrf2, HO-1, NQO1, FGF21, UCP1 and UCP2 in the CLK8 group. The results showed that berberine downregulated the glucose content in extracellular fluid in IR-HepG2 cells in a time-and dose-dependent manner. Moreover, berberine inhibited hepatic glucose output and reduced intracellular Ca~(2+) and ROS whereas elevated JC-1 membrane potential and improved mitochondrial structure to enhance ATP production. In addition, berberine upregulated the rate-limiting enzymes such as PFKL, L-PK and PDHA1 to promote glycolysis and aerobic oxidation but also downregulated PGC1α, FoxO1, G6Pase, PEPCK and glucagon to inhibit hepatic gluconeogenesis. Berberine not only upregulated p-Nrf2(Ser40), HO-1 and NQO1 to enhance antioxidant capacity but also upregulated FGF21, UCP1 and UCP2 to promote energy metabolism. Moreover, berberine increased BMAL1, CLOCK and nuclear BMAL1:CLOCK complex whereas CLK8 reduced the nuclear BMAL1:CLOCK complex. Finally, CLK8 decreased PDHA1, PFKL, Nrf2, HO-1, NQO1, FGF21, UCP1, UCP2 and increased FoxO1, PGC1α, G6Pase and glucagon compared with the 20 μmol·L~(-1) berberine group. BMAL1:CLOCK complex inhibited gluconeogenesis, promoted glycolysis and glucose aerobic oxidation pathways, improved the reduction status within mitochondria, protected mitochondrial structure and function, increased ATP energy storage and promoted energy consumption in IR-HepG2 cells. These results suggested that berberine mediated BMAL1:CLOCK complex to coordinate the regulation of hepatic IR cells to improve energy metabolism in vitro.
Humans
;
Berberine/pharmacology*
;
Gluconeogenesis/drug effects*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Liver/drug effects*
;
Energy Metabolism/drug effects*
;
Hypoglycemic Agents/pharmacology*
;
ARNTL Transcription Factors/genetics*
;
Glycolysis/drug effects*
;
Oxidation-Reduction/drug effects*
3.Qingda Granule Attenuates Hypertension-Induced Cardiac Damage via Regulating Renin-Angiotensin System Pathway.
Lin-Zi LONG ; Ling TAN ; Feng-Qin XU ; Wen-Wen YANG ; Hong-Zheng LI ; Jian-Gang LIU ; Ke WANG ; Zhi-Ru ZHAO ; Yue-Qi WANG ; Chao-Ju WANG ; Yi-Chao WEN ; Ming-Yan HUANG ; Hua QU ; Chang-Geng FU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(5):402-411
OBJECTIVE:
To assess the efficacy of Qingda Granule (QDG) in ameliorating hypertension-induced cardiac damage and investigate the underlying mechanisms involved.
METHODS:
Twenty spontaneously hypertensive rats (SHRs) were used to develope a hypertension-induced cardiac damage model. Another 10 Wistar Kyoto (WKY) rats were used as normotension group. Rats were administrated intragastrically QDG [0.9 g/(kg•d)] or an equivalent volume of pure water for 8 weeks. Blood pressure, histopathological changes, cardiac function, levels of oxidative stress and inflammatory response markers were measured. Furthermore, to gain insights into the potential mechanisms underlying the protective effects of QDG against hypertension-induced cardiac injury, a network pharmacology study was conducted. Predicted results were validated by Western blot, radioimmunoassay immunohistochemistry and quantitative polymerase chain reaction, respectively.
RESULTS:
The administration of QDG resulted in a significant decrease in blood pressure levels in SHRs (P<0.01). Histological examinations, including hematoxylin-eosin staining and Masson trichrome staining revealed that QDG effectively attenuated hypertension-induced cardiac damage. Furthermore, echocardiography demonstrated that QDG improved hypertension-associated cardiac dysfunction. Enzyme-linked immunosorbent assay and colorimetric method indicated that QDG significantly reduced oxidative stress and inflammatory response levels in both myocardial tissue and serum (P<0.01).
CONCLUSIONS
Both network pharmacology and experimental investigations confirmed that QDG exerted its beneficial effects in decreasing hypertension-induced cardiac damage by regulating the angiotensin converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor type 1 axis and ACE/Ang II/Ang II receptor type 2 axis.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Hypertension/pathology*
;
Renin-Angiotensin System/drug effects*
;
Rats, Inbred SHR
;
Oxidative Stress/drug effects*
;
Male
;
Rats, Inbred WKY
;
Blood Pressure/drug effects*
;
Myocardium/pathology*
;
Rats
;
Inflammation/pathology*
4.Robot-assisted laparoscopic treatment of horseshoe kidney combined with renal tumor: a case report and literature review
Yue ZHANG ; Ying KE ; Pengyu LU ; Lijie WEN ; Xiaolong XU ; Yang YU ; Bo YANG
Chinese Journal of Postgraduates of Medicine 2024;47(1):63-68
Objective:To explore the technical focus of robotic-assisted laparoscopic surgery for the treatment of horseshoe kidney combined with renal tumor.Methods:The clinical data of a patient with horseshoe kidney combined with renal tumor treated by robot-assisted laparoscopic partial nephrectomy in the Second Hospital of Dalian Medical University in September 2021 were retrospectively analyzed. PubMed, CNKI, Wanfang and VIP databases were searched for all the literature on the use of robot-assisted laparoscopic nephrectomy or partial nephrectomy for the treatment of horseshoe kidney combined with renal tumor from the time of establishment to December 2022.Results:A total of 11 patients from 10 articles were retrieved and 12 patients were enrolled. Among the 12 patients, 4 cases used the retroperitoneal approach and 8 cases used the transperitoneal approach. Two cases were operated by traditional laparoscope, and the arteries were searched for and controlled before the robotic arm was placed to perform the partial nephrectomy and suture; and 10 cases were operated with the robotic-assisted laparoscopic approach throughout the whole procedure. Five cases of nephrectomy were performed on one side, and 7 cases were performed in the partial nephrectomy. Postoperative pathological diagnosis was clear cell carcinoma in 8 cases, chromophobe cell carcinoma in 1 case, eosinophilic cell carcinoma in 1 case, renal cell carcinoma in 1 case, and renal abscess in 1 case. The patient in the Second Hospital of Dalian Medical University was 38 years old female who was admitted to the hospital with a fever. After CT arteriography and three-dimensional reconstruction, robotic-assisted laparoscopic partial nephrectomy of right kidney and isthmus dissecting was performed. During the operation, tumor trophoblast vessels were ligated and dissected one by one by using single-use tissue closure clips, and the isthmus was dissected using endoscopic cutting anastomosis on the left side of the tumor, with the tumor edges sharply resected and completely dissected. The operation time was 240 min, without thermal ischemia time, and the bleeding volume was about 300 ml. The patient recovered well after the operation, and the postoperative pathological diagnosis was renal abscess.Conclusions:Robot-assisted laparoscopic treatment of horseshoe kidney combined with renal tumor is safe and effective, and has more advantages than traditional laparoscopic surgery. Preoperative CT arteriography or three-dimensional reconstruction examination should be applied to fully evaluate the variant vessels. The surgical access and plan should be decided according to the size and location of the tumor. The variant vessels should be properly handled during operation. The use of endoscopic cutting anastomosis to deal with the isthmus can be more conducive to the surgical operation.
5.Perilla AP2 Gene Family PfWRI1 Promotes Oil Accumulation in Plant Seeds
Xiao-Yan FENG ; Qi-Feng WANG ; Ke-Xin YUE ; Fu-Peng HOU ; Hua-Xiang XU ; Jun-Xing LU ; Jian HU ; Tao ZHANG
Chinese Journal of Biochemistry and Molecular Biology 2024;40(8):1161-1172
AP2 transcription factors belong to the AP2/ERF superfamily and are involved in the regula-tion of various biological processes in plant growth and development,as well as in response to biotic and abiotic stresses.However,studies on the AP2 transcription factor family of Perilla frutescens have not been reported.In this study,totally 18 AP2 family members were identified from the Perilla frutescens ge-nome and analyzed for gene structure,conserved motifs,and cis-acting elements using bioinformatics.WRINKLED1(WRI1)is a key regulator of lipid biosynthesis in many plant species and plays an impor-tant role in the regulation of lipid synthesis.Sequence comparison revealed that one member of WRI1 is highly homologous to AtWRI1 and contains two conserved AP2 domains,named PfWRI1.The expression levels of PfAP2 family genes were analyzed in different tissues of Perilla frutescens and at different stages of seed development in conjunction with the transcriptome data,and the results showed that PfWRI1 is highly expressed only in the seeds of Perilla frutescens,suggesting that PfWRI1 may be related to the de-velopmental process of the seeds.The overexpression vector of plant pCAMBIA1303-PfWRI1 was con-structed,and wild-type(Col)and mutant(wri1-1)Arabidopsis thaliana were transformed by Agrobacte-rium tumefaciens to obtain overexpression and complementation lines,respectively.The results showed that the expression of P fWRI1 led to an increase in oil content of Arabidopsis seeds by 8.90%-13.57%compared with Col,and promoted the accumulation of oleic acid(C18:1)and linoleic acid(18:2)and reduced the accumulation of palmitic acid(C16:0),arachidonic acid(C20:0),and cis-11-Eicosenoic acid(C20:1)in transgenic Arabidopsis seeds.In addition,PfWRI1 gene expression increased the ex-pression of glycolysis and fatty acid biosynthesis-related genes AtPKP-α,AtPKP-β1,AtBCCP2,AtSUS2,and AtLIP1.Taken together,PfWRI1 may promote lipid accumulation by increasing unsaturated fatty acid content through interaction with the above genes.
6.Clinical Characteristics of CD4-CD56+Blastic Plasmacytoid Dendritic Cell Neoplasm
He-Sheng HE ; Yuan-Feng WEI ; Xin-Yue JI ; You-Hai XU ; Yu-Qiong YANG ; Xiao-Ke JIN
Journal of Experimental Hematology 2024;32(2):588-594
Objective:To explore the clinical manifestations,pathological features,immunophenotype,as well as diagnosis,treatment and prognosis of patients with CD4-CD56+blastic plasmacytoid dendritic cell neoplasm(BPDCN),in order to further understand the rare disease.Methods:The clinical data,laboratory examinations and treatment regimens of two patients with CD4-CD56+BPDCN in the First Affiliated Hospital of Wannan Medical College were retrospectively analyzed.Results:The two patients were both elderly males with tumor involved in skin,bone marrow,lymph nodes,etc.Immunohistochemical results of skin lesions showed that both CD56 and CD123 were positive,while CD4,CD34,TdT,CD3,CD20,MPO and EBER were negative.Flow cytometry of bone marrow demonstrated that CD56,CD123,and CD304 were all positive,while specific immune markers of myeloid and lymphoid were negative.Two patients were initially very sensitive to acute lymphoblastic leukemia or lymphomatoid chemotherapy regimens,but prone to rapid relapse.The overall survival of both patients was 36 months and 4 months,respectively.Conclusion:CD4-CD56+BPDCN is very rare and easily misdiagnosed as other hematological tumors with poor prognosis.Acute lymphoblastic leukemia or lymphomatoid therapy should be used first to improve the poor prognosis.
7.Design,numerical simulation and experimental study of novel oxygenator
Ming-Hao YUE ; Shi-Yao ZHANG ; Ji-Nian LI ; Hui-Chao LIU ; Zi-Hua SU ; Ya-Wei WANG ; Zeng-Sheng CHEN ; Shi-Hang LIN ; Jin-Yu LI ; Ya-Ke CHENG ; Yong-Fei HU ; Cun-Ding JIA ; Ming-Zhou XU
Chinese Medical Equipment Journal 2024;45(3):23-28
Objective To design a novel oxygenator to solve the existing problems of extracorporeal membrane oxygenation(ECMO)machine in high transmembrane pressure difference,low efficiency of blood oxygen exchange and susceptibility to thrombosis.Methods The main body of the oxygenator vascular access flow field was gifted with a flat cylindrical shape.The topology of the vascular access was modeled in three dimensions,and the whole flow field was cut into a blood inlet section,an inlet buffer,a heat exchange zone,a blood oxygen exchange zone,an outlet buffer and a blood outlet section.The oxygenator was compared with Quadrox oxygenator by means of ANSYS FLUENT-based simulation and prototype experiments.Results Simulation calculations showed the oxygenator designed was comparable to the clinically used ones in general,and gained advantages in transmembrane pressure difference,blood oxygen exchange and flow uniformity.Experimental results indicated that the oxygenator behaved better than Quadrox oxygenator in transmembrane pressure difference and blood oxygen exchange.Conclusion The oxygenator has advantages in transmem-brane pressure difference,temperature change,blood oxygen ex-change and low probability of thrombosis.[Chinese Medical Equipment Journal,2024,45(3):23-28]
8.Clinicopathological features of SMARCA4-deficient lung adenocarcinoma: a study of 42 cases
Jing HAN ; Xianzheng GAO ; Yue XU ; Enjie LIU ; Qian DU ; Ke CHEN ; Shenglei LI
Chinese Journal of Pathology 2024;53(2):136-142
Objective:To investigate the clinicopathological characteristics and genetic mutations of SMARCA4-deficient lung adenocarcinoma.Methods:From January 2021 to April 2023 in the First Affiliated Hospital of Zhengzhou University, 42 cases of SMARCA4-deficienct lung adenocarcinoma were diagnosed and now analyzed. All cases were retrospectively studied using hematoxylin-eosin staining and immunohistochemistry. The clinicopathological features were reviewed. Next-generation sequencing (NGS) was performed to investigate the mutations of related genes.Results:Among the 42 cases, there were 35 biopsy and 7 surgical specimens. There were 38 males and 4 females. The male to female ratio was 9.5∶1.0, with an age range from 42 to 78 years. Thirty-three patients were smokers. Overall, 4 cases (9.5%), 2 cases (4.7%), 18 cases (42.9%) and 18 cases (42.9%) were at stages Ⅰ, Ⅱ, Ⅲ, and Ⅳ, respectively. Microscopically, all the cases were non-mucinous adenocarcinoma, without lepidic pattern. The morphology was diverse. Rhabdomyoid cells, tumor giant cells and tumor necrosis were present. Most of the tumor cells had eosinophilic cytoplasm and occasionally clear cytoplasm. Defined cell borders and variable cytoplasmic hyaline secretory globules could be found. Inflammatory cells infiltrated the tumor stroma. Immunohistochemistry showed 29 cases (69.0%, 29/42) expressed TTF1, 10 cases (40.0%, 10/25) expressed Napsin A, and 20 cases (100.0%, 20/20) expressed INI1. Forty cases (95.2%, 40/42) showed BRG1 loss in all tumor cells, while 2 cases (4.8%, 2/42) had partial BRG1 loss. PD-L1 (22C3) was positive in 59.2% of the cases (16/27). NGS revealed mutations in EGFR, ROS1, MET, RET and KRAS. Six cases (6/8) showed SMARCA4 mutation, while some cases were accompanied by mutations of TP53 (7/15), STK11 (4/8), and KEAP1 (1/8). Driver gene mutations were more common in women ( P<0.05). Patients were followed up for 1-25 months. Four patients died and 20 patients′ diseases progressed. Conclusions:SMARCA4-deficient lung adenocarcinoma lacks characteristic morphology. Most of them express TTF1 and harbor driver gene mutations. It is necessary to identify this subset of lung adenocarcinoma by carrying out BRG1 stain routinely on lung adenocarcinoma. These patients can then be identified and benefit from targeted therapies.
9.Transcutaneous Electrical Acupoint Stimulation Promotes PGC-1α Mediated Mitochondrial Biogenesis and Antioxidant Stress to Protect Cognitive Function in Vascular Dementia Rats
Ji-Liang KANG ; Ke HU ; Jun-Yue LU ; Zi-Wei HU ; Biao-Ping XU ; Xiao-Mao LI ; Jun-Jie ZHOU ; Yu JIN ; Min TANG ; Rong XU ; You-Liang WEN
Progress in Biochemistry and Biophysics 2024;51(5):1191-1202
ObjectiveThe purpose of this study was to investigate the effects of transcutaneous electrical acupoint stimulation (TEAS) on cognitive function of vascular dementia (VD) rats and its mechanism. MethodsVD rat model was established by modified two-vessel occlusion (2-VO). After modeling, TEAS and electroacupuncture (EA) were used to stimulate Baihui and Zusanli points of rats respectively for 14 d. After treatment, novel object recognition test, Morris water maze test, and Y maze test were used to evaluate the spatial memory and learning ability of rats. Hematoxylin and eosin staining was used to observe the morphology of hippocampal neurons. Transmission electron microscopy was used to observe the ultrastructure of hippocampal mitochondria. Enzyme-linked immunosorbent assay kits were used to detected the levels of SOD, CAT, GSH-Px, MDA and ROS in serum of rats. Western blot was used to detect the expression of PGC-1α, TFAM, HO-1, NQO1 proteins in the hippocampus, Keap1 protein in the cytoplasm and Nrf2, NRF1 proteins in the nucleus. ResultsAfter treatment for 14 d, compared to the model group, the escape latency of VD rats decreased, while the discrimination index, the times of rats crossing the original platform area, the residence time in the original platform quadrant, and the percentage of alternation increased. TEAS can improve the structure of hippocampal neurons and mitochondria of VD rats, showing that neurons were arranged more regularly and distributed more evenly, nuclear membrane and nucleoli were clearer, and mitochondrial swelling were reduced, mitochondrial matrix density were increased, and mitochondrial cristae were more obvious. The levels of SOD, GSH-Px and CAT in serum increased significantly, while the concentration of MDA and ROS decreased. TEAS also up-regulated the expression levels of PGC-1α TFAM, NQO1 and HO-1 proteins in the hippocampus and Nrf2, NRF1 proteins in the nucleus, but down-regulated the Keap1 protein in the cytoplasm. ConclusionTEAS can improve cognition, hippocampal neurons and mitochondrial structure of VD rats, and the effect is better than EA. The mechanism may be the activation of PGC-1α mediated mitochondrial biogenesis and antioxidant stress, which also provides a potential therapeutic technology and experimental basis for the treatment of VD.
10.Berberine regulates glucose and lipid metabolism via clock-controlled genes to ameliorate insulin resistance of hepatocytes.
Li-Ke YAN ; Can CUI ; Ying WANG ; Shui-Lan ZHU ; Zhong-Hua XU ; Han-Yue XIAO ; Wei-Hua LIU ; Jun TU
China Journal of Chinese Materia Medica 2024;49(23):6368-6377
This study aims to investigate the mechanism of berberine in regulating the metabolism network via clock-controlled genes represented by brain and muscle arnt-like 1(BMAL1) to ameliorate insulin resistance(IR) of hepatocytes in vitro. The HepG2 cell model of dexamethasone-induced IR(IR-HepG2) was established and treated with 5, 10, and 20 μmol·L~(-1) berberine, respectively, for 24 h. The glucose oxidase method and cell counting kit-8(CCK-8) assay were employed to measure extracellular glucose concentration and cell viability, respectively. Periodic acid-Schiff(PAS) staining and lipid fluorescence method were used to detect glycogen and lipids. The immunofluorescence(IF) assay was employed to detect the nuclear localization of BMAL1 and circadian locomotor output cycles kaput(CLOCK) in IR-HepG2 cells. Western blot was employed to determine the protein levels of BMAL1, CLOCK, period circadian clock 2(PER2), cryptochrome circadian regulator 1(CRY1), Rev-Erbα, carbohydrate response element-binding protein(ChREBP), peroxisome proliferator-activated receptors alpha and gamma(PPARα/γ), sterol regulatory element-binding protein 1C(SREBP-1C), mammalian target of rapamycin(mTOR), protein kinase B(Akt), glycogen synthase kinase-3β(GSK3β), acetyl coenzyme A carboxylase 1(ACC1), fatty acid synthase(FASN), carnitine palmitoyltransferase 1α(CPT1α), nicotinamide phosphoribosyltransferase(NAMPT), silent information regulator 1(SIRT1), adiponectin(ADPN), insulin receptor substrate 2(IRS2), and phosphatidylinositol 3-kinase regulatory subunit p85(PI3Kp85). In addition, the levels of phosphorylated adenosine monophosphate-activated protein kinase alpha(AMPKα), Akt, GSK3β, BMAL1, and mTOR were determined. Furthermore, 20 μmol·L~(-1) CLK8 was added to measure the glucose consumption as well as the protein levels of ChREBP, PPARα, and mTOR in IR-HepG2 cells. The results showed that berberine increased the glucose consumption, lowered the lipid levels, increased the expression and nuclear localization of BMAL1 and CLOCK, and up-regulated the level of BMAL1 in IR-HepG2 cells. Furthermore, berberine up-regulated the levels of ADPN, IRS2, PI3Kp85, p-Akt(Ser473)/Akt, p-mTOR(Ser2448)/mTOR, PPARα, and CPT1α, and down-regulated the levels of p-GSK3β(Ser9)/GSK3β, ChREBP, SREBP-1C, ACC1, and FASN. The addition of CLK8 reduced glucose consumption in IR-HepG2 cells, up-regulated the ChREBP level, and down-regulated PPARα and mTOR levels by inhibiting the BMAL1 and CLOCK interaction. In summary, berberine regulated glucose and lipid metabolism via clock-controlled genes with BMAL1 at the core to ameliorate IR of hepatocytes.
Humans
;
Hepatocytes/drug effects*
;
Lipid Metabolism/drug effects*
;
Glucose/metabolism*
;
Berberine/pharmacology*
;
Insulin Resistance
;
Hep G2 Cells
;
CLOCK Proteins/genetics*
;
ARNTL Transcription Factors/genetics*

Result Analysis
Print
Save
E-mail