1.Expression of IP3R2 and RYR2 mediated Ca2+signals in a mouse model of delayed encephalopathy after acute carbon monoxide poisoning
Jili ZHAO ; Tianyu MENG ; Yarong YUE ; Xin ZHANG ; Wenqian DU ; Xinyu ZHANG ; Hui XUE ; Wenping XIANG
Chinese Journal of Tissue Engineering Research 2025;29(2):254-261
BACKGROUND:Ca2+expression in astrocytes has been found to be closely related to cognitive function,and the Ca2+signaling pathway regulated by inositol 1,4,5-trisphosphate receptors(IP3R2)and ryanodine receptor(RYR)2 receptors has become a hot spot in the study of cognitive disorder-related diseases. OBJECTIVE:To investigate the expression of Ca2+signals mediated by IP3R2 and RYR2 in hippocampal astrocytes in animal models of delayed encephalopathy after acute carbon monoxide poisoning,and to explore the possible pathogenesis of delayed encephalopathy after acute carbon monoxide poisoning. METHODS:C57BL mice with qualified cognitive function were selected by Morris water maze experiment and randomly divided into control group and experimental group.An animal model of delayed encephalopathy after acute carbon monoxide poisoning was established by static carbon monoxide inhalation in the experimental group,and the same amount of air was inhaled in the control group.Behavioral and neuronal changes,astrocyte specific marker glial fibrillary acidic protein,IP3R2,RYR2 receptor and Ca2+concentration in astrocytes of the two groups were detected using Morris water maze,hematoxylin-eosin staining,western blot,immunofluorescence double labeling and Ca2+fluorescence probe at 21 days after modeling. RESULTS AND CONCLUSION:In the Morris water maze,the escape latency of the experimental group was significantly longer than that of the control group(P<0.05).Hematoxylin-eosin staining results showed that in the experimental group,the number of hippocampal pyramidal cells decreased,the cell structure was disordered,and the nucleus was broken and dissolved.Immunofluorescence results showed that IP3R2 and RYR2 were co-expressed with glial fibrillary acidic protein in the hippocampus,and the expressions of IP3R2,RYR2 and glial fibrillary acidic protein were up-regulated in the hippocampus of the experimental group(P<0.05).Western blot analysis showed that the expressions of IP3R2,RYR2,and glial fibrillary acidic protein in the hippocampus of the experimental group were increased(P<0.05).Ca2+concentration in hippocampal astrocytes increased significantly in the experimental group(P<0.05).To conclude,astrocytes may affect Ca2+signals by mediating IP3R2 and RYR2 receptors,then impair the cognitive function of mice with carbon monoxide poisoning,and eventually lead to delayed encephalopathy after acute carbon monoxide poisoning.
2.Usefulness of intraoperative choledochoscopy in laparoscopic subtotal cholecystectomy for severe cholecystitis
Rui-Hui ZHANG ; Xiang-Nan WANG ; Yue-Feng MA ; Xue-Qian TANG ; Mei-Ju LIN ; Li-Jun SHI ; Jing-Yi LI ; Hong-Wei ZHANG
Annals of Hepato-Biliary-Pancreatic Surgery 2025;29(2):192-198
Laparoscopic subtotal cholecystectomy (LSC) has been a safe and viable alternative to conversion to laparotomy in cases of severe cholecystitis. The objective of this study is to determine the utility of intraoperative choledochoscopy in LSC for the exploration of the gallbladder, cyst duct, and subsequent stone clearance of the cystic duct in cases of severe cholecystitis. A total of 72 patients diagnosed with severe cholecystitis received choledochoscopy-assisted laparoscopic subtotal cholecystectomy (CALSC). A choledochoscopy was performed to explore the gallbladder cavity and/or cystic duct, and to extract stones using a range of techniques. The clinical records, including the operative records and outcomes, were subjected to analysis. No LSC was converted to open surgery, and no bile duct or vascular injuries were sustained. All stones within the cystic duct were removed by a combination of techniques, including high-frequency needle knife electrotomy, basket, and electrohydraulic lithotripsy. A follow-up examination revealed the absence of residual bile duct stones, with the exception of one common bile duct stone, which was extracted via endoscopic retrograde cholangiopancreatography. In certain special cases, CALSC may prove to be an efficacious treatment for the management of severe cholecystitis. This technique allows for optimal comprehension of the situation within the gallbladder cavity and cystic duct, facilitating the removal of stones from the cystic duct and reducing the residue of the non-functional gallbladder remnant.
3.Usefulness of intraoperative choledochoscopy in laparoscopic subtotal cholecystectomy for severe cholecystitis
Rui-Hui ZHANG ; Xiang-Nan WANG ; Yue-Feng MA ; Xue-Qian TANG ; Mei-Ju LIN ; Li-Jun SHI ; Jing-Yi LI ; Hong-Wei ZHANG
Annals of Hepato-Biliary-Pancreatic Surgery 2025;29(2):192-198
Laparoscopic subtotal cholecystectomy (LSC) has been a safe and viable alternative to conversion to laparotomy in cases of severe cholecystitis. The objective of this study is to determine the utility of intraoperative choledochoscopy in LSC for the exploration of the gallbladder, cyst duct, and subsequent stone clearance of the cystic duct in cases of severe cholecystitis. A total of 72 patients diagnosed with severe cholecystitis received choledochoscopy-assisted laparoscopic subtotal cholecystectomy (CALSC). A choledochoscopy was performed to explore the gallbladder cavity and/or cystic duct, and to extract stones using a range of techniques. The clinical records, including the operative records and outcomes, were subjected to analysis. No LSC was converted to open surgery, and no bile duct or vascular injuries were sustained. All stones within the cystic duct were removed by a combination of techniques, including high-frequency needle knife electrotomy, basket, and electrohydraulic lithotripsy. A follow-up examination revealed the absence of residual bile duct stones, with the exception of one common bile duct stone, which was extracted via endoscopic retrograde cholangiopancreatography. In certain special cases, CALSC may prove to be an efficacious treatment for the management of severe cholecystitis. This technique allows for optimal comprehension of the situation within the gallbladder cavity and cystic duct, facilitating the removal of stones from the cystic duct and reducing the residue of the non-functional gallbladder remnant.
4.Usefulness of intraoperative choledochoscopy in laparoscopic subtotal cholecystectomy for severe cholecystitis
Rui-Hui ZHANG ; Xiang-Nan WANG ; Yue-Feng MA ; Xue-Qian TANG ; Mei-Ju LIN ; Li-Jun SHI ; Jing-Yi LI ; Hong-Wei ZHANG
Annals of Hepato-Biliary-Pancreatic Surgery 2025;29(2):192-198
Laparoscopic subtotal cholecystectomy (LSC) has been a safe and viable alternative to conversion to laparotomy in cases of severe cholecystitis. The objective of this study is to determine the utility of intraoperative choledochoscopy in LSC for the exploration of the gallbladder, cyst duct, and subsequent stone clearance of the cystic duct in cases of severe cholecystitis. A total of 72 patients diagnosed with severe cholecystitis received choledochoscopy-assisted laparoscopic subtotal cholecystectomy (CALSC). A choledochoscopy was performed to explore the gallbladder cavity and/or cystic duct, and to extract stones using a range of techniques. The clinical records, including the operative records and outcomes, were subjected to analysis. No LSC was converted to open surgery, and no bile duct or vascular injuries were sustained. All stones within the cystic duct were removed by a combination of techniques, including high-frequency needle knife electrotomy, basket, and electrohydraulic lithotripsy. A follow-up examination revealed the absence of residual bile duct stones, with the exception of one common bile duct stone, which was extracted via endoscopic retrograde cholangiopancreatography. In certain special cases, CALSC may prove to be an efficacious treatment for the management of severe cholecystitis. This technique allows for optimal comprehension of the situation within the gallbladder cavity and cystic duct, facilitating the removal of stones from the cystic duct and reducing the residue of the non-functional gallbladder remnant.
5.The Role of Golgi Apparatus Homeostasis in Regulating Cell Death and Major Diseases
Xin-Yue CHENG ; Feng-Hua YAO ; Hui ZHANG ; Yong-Ming YAO
Progress in Biochemistry and Biophysics 2025;52(8):2051-2067
The Golgi apparatus (GA) is a key membranous organelle in eukaryotic cells, acting as a central component of the endomembrane system. It plays an irreplaceable role in the processing, sorting, trafficking, and modification of proteins and lipids. Under normal conditions, the GA cooperates with other organelles, including the endoplasmic reticulum (ER), lysosomes, mitochondria, and others, to achieve the precise processing and targeted transport of nearly one-third of intracellular proteins, thereby ensuring normal cellular physiological functions and adaptability to environmental changes. This function relies on Golgi protein quality control (PQC) mechanisms, which recognize and handle misfolded or aberrantly modified proteins by retrograde transport to the ER, proteasomal degradation, or lysosomal clearance, thus preventing the accumulation of toxic proteins. In addition, Golgi-specific autophagy (Golgiphagy), as a selective autophagy mechanism, is also crucial for removing damaged or excess Golgi components and maintaining its structural and functional homeostasis. Under pathological conditions such as oxidative stress and infection, the Golgi apparatus suffers damage and stress, and its homeostatic regulatory network may be disrupted, leading to the accumulation of misfolded proteins, membrane disorganization, and trafficking dysfunction. When the capacity and function of the Golgi fail to meet cellular demands, cells activate a series of adaptive signaling pathways to alleviate Golgi stress and enhance Golgi function. This process reflects the dynamic regulation of Golgi capacity to meet physiological needs. To date, 7 signaling pathways related to the Golgi stress response have been identified in mammalian cells. Although these pathways have different mechanisms, they all help restore Golgi homeostasis and function and are vital for maintaining overall cellular homeostasis. It is noteworthy that the regulation of Golgi homeostasis is closely related to multiple programmed cell death pathways, including apoptosis, ferroptosis, and pyroptosis. Once Golgi function is disrupted, these signaling pathways may induce cell death, ultimately participating in the occurrence and progression of diseases. Studies have shown that Golgi homeostatic imbalance plays an important pathological role in various major diseases. For example, in Alzheimer’s disease (AD) and Parkinson’s disease (PD), Golgi fragmentation and dysfunction aggravate the abnormal processing of amyloid β-protein (Aβ) and Tau protein, promoting neuronal loss and advancing neurodegenerative processes. In cancer, Golgi homeostatic imbalance is closely associated with increased genomic instability, enhanced tumor cell proliferation, migration, invasion, and increased resistance to cell death, which are important factors in tumor initiation and progression. In infectious diseases, pathogens such as viruses and bacteria hijack the Golgi trafficking system to promote their replication while inducing host defensive cell death responses. This process is also a key mechanism in host-pathogen interactions. This review focuses on the role of the Golgi apparatus in cell death and major diseases, systematically summarizing the Golgi stress response, regulatory mechanisms, and the role of Golgi-specific autophagy in maintaining homeostasis. It emphasizes the signaling regulatory role of the Golgi apparatus in apoptosis, ferroptosis, and pyroptosis. By integrating the latest research progress, it further clarifies the pathological significance of Golgi homeostatic disruption in neurodegenerative diseases, cancer, and infectious diseases, and reveals its potential mechanisms in cellular signal regulation.
6.Characteristics, microbial composition, and mycotoxin profile of fermented traditional Chinese medicines.
Hui-Ru ZHANG ; Meng-Yue GUO ; Jian-Xin LYU ; Wan-Xuan ZHU ; Chuang WANG ; Xin-Xin KANG ; Jiao-Yang LUO ; Mei-Hua YANG
China Journal of Chinese Materia Medica 2025;50(1):48-57
Fermented traditional Chinese medicine(TCM) has a long history of medicinal use, such as Sojae Semen Praeparatum, Arisaema Cum Bile, Pinelliae Rhizoma Fermentata, red yeast rice, and Jianqu. Fermentation technology was recorded in the earliest TCM work, Shen Nong's Classic of the Materia Medica. Microorganisms are essential components of the fermentation process. However, the contamination of fermented TCM by toxigenic fungi and mycotoxins due to unstandardized fermentation processes seriously affects the quality of TCM and poses a threat to the life and health of consumers. In this paper, the characteristics, microbial composition, and mycotoxin profile of fermented TCM are systematically summarized to provide a theoretical basis for its quality and safety control.
Fermentation
;
Mycotoxins/analysis*
;
Drugs, Chinese Herbal/analysis*
;
Fungi/classification*
;
Bacteria/genetics*
;
Drug Contamination
;
Medicine, Chinese Traditional
7.Molecular mechanism of programmed cell death in lung cancer and progress in traditional Chinese medicine intervention.
Cheng LUO ; Bo NING ; Xin-Yue ZHANG ; Yu-Zhi HUO ; Xin-Hui WU ; Yuan-Hang YE ; Fei WANG
China Journal of Chinese Materia Medica 2025;50(3):632-643
Lung cancer is one of the most common and deadliest cancers globally, with its incidence and mortality rates rising each year. Therefore, finding new, safe, and effective alternative therapies poses a significant research challenge in this field. Programmed cell death refers to the process by which cells actively self-destruct in response to specific stimuli, regulated by genetic mechanisms. Modern research indicates that dysregulation of programmed cell death is widespread in the occurrence and progression of lung cancer, allowing cancer cells to evade death while continuing to proliferate and metastasize. Thus, inducing the death of lung cancer cells can be considered a novel therapeutic strategy for treating the disease. In recent years, research on traditional Chinese medicine(TCM) in the field of oncology has gained widespread attention, becoming a focal point. An increasing number of studies have demonstrated that TCM can inhibit the progression of lung cancer and exert anti-cancer effects by inducing apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis. This paper provided a comprehensive review of the molecular mechanisms of programmed cell death in lung cancer, along with the potential mechanisms and research advancements related to the regulation of these processes by TCM, so as to establish a theoretical foundation and direction for future basic and clinical research on lung cancer.
Humans
;
Lung Neoplasms/pathology*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
;
Apoptosis/drug effects*
;
Animals
;
Autophagy/drug effects*
8.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires
9.Structural identification for in vivo metabolites of proanthocyanidin B_2.
Wen-Hui ZHAO ; Hui-Ting TANG ; Jun LI ; Yue-Lin SONG ; Ke ZHANG ; Yun-Fang ZHAO
China Journal of Chinese Materia Medica 2025;50(10):2841-2852
Proanthocyanidin B_2(PAC-B_2), a polyphenolic dimeric compound comprising two epicatechin molecules linked by a C-C bond, is extensively found in traditional Chinese medicines, with anti-tumor and anti-oxidant activities. Given the limited bioavailability, a thorough investigation and comprehensive understanding of PAC-B_2 metabolism in vivo are essential for elucidating therapeutic forms and mechanisms. In the present study, ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) in the negative ion mode was employed to acquire the MS/MS information of PAC-B_2 and metabolites in urine and feces samples of the rats administrated with PAC-B_2. Online energy-resolved MS(ER-MS) was applied as supplementary to obtain the full collision energy ramp-MS~2 spectra(FCER-MS~2) of isomers-of-interest, which implied comprehensive MS~2 information of targeted compounds. Finally, the possible metabolic pathways of PAC-B_2 in rats were proposed. The primary fragmentation behaviors of PAC-B_2 in the negative ion mode included quinone methide fission between C_4-C_8 bond, retro Diels-Alder cracking of F-ring, heterocyclic ring fission of C-ring, and neutral loss of small molecules such as H_2O. A total of 25 metabolites were tentatively elucidated in urine and feces samples of rats administrated with PAC-B_2 by fragmentation pattern and reported literature. Two groups of isomers, M3/M4/M5 and M9/M11, were confirmatively differentiated based on the relationships between optimal collision energy provided by FCER-MS~2 and bond properties, including bond length and bond dissociation energy. In addition to the ring-opening and methylation, PAC-B_2 could also be metabolized into epicatechin and low molecular weight phenolic acids, which were subsequently subjected to dehydroxylation, ring-opening, methylation, sulfation, and glucuronidation. The structural information provided by online ER-MS and FCER-MS~2 enabled the differentiation of isomers and improved the identification confidence. More importantly, the present study deeply analyzes the in vivo metabolic pathways of PAC-B_2, providing a basis for the research on the pharmacological mechanism of this compound.
Animals
;
Proanthocyanidins/urine*
;
Rats
;
Male
;
Drugs, Chinese Herbal/chemistry*
;
Rats, Sprague-Dawley
;
Tandem Mass Spectrometry
;
Chromatography, High Pressure Liquid
;
Feces/chemistry*
;
Molecular Structure
10.Rhodiolae Crenulatae Radix et Rhizoma protects brain microvascular endothelial cells from ischemia and hypoxia injury by regulating PI3K/AKT/GSK3β pathway.
Li TANG ; Qiu-Yue YANG ; Hong-Fa CHENG ; Ya-Hui XIE ; Qiu-Xia ZHANG
China Journal of Chinese Materia Medica 2025;50(11):3127-3136
This study elucidates the mechanism of Rhodiolae Crenulatae Radix et Rhizoma(RCRR) in protecting brain microvascular endothelial cells from oxygen-glucose deprivation(OGD) injury and reveals the modern pharmacological mechanism of RCRR's traditional use in nourishing Qi and promoting blood circulation to protect endothelial cells. The scratch assay was employed to assess the migratory capacity of endothelial cells. Immunofluorescence and Western blot techniques were employed to assess the protein expression of tight junction proteins zonula occludens-1(ZO-1), occludin, claudin-5, and proteins of the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)/glycogen synthase kinase-3beta(GSK3β) pathway. The results demonstrated that 63 bioactive components and 125 potential core targets of RCRR were identified from the ETCM, TCMBank, and SwissTargetPrediction databases, as well as from the literature. A total of 1 708 brain microvascular endothelial cell-related targets were identified from the GeneCards and OMIM databases, and 52 targets were obtained by intersecting drug components with cell targets. The protein-protein interaction(PPI) network analysis revealed that AKT1, epidermal growth factor receptor(EGFR), matrix metalloproteinase 9(MMP9), estrogen receptor 1(ESR1), proto-oncogene tyrosine-protein kinase(SRC), peroxisome proliferator-activated receptor gamma(PPARG), GSK3β, and matrix metalloproteinase 2(MMP2) were considered hub genes. The KEGG enrichment analysis identified the PI3K/AKT pathway as the primary signaling pathway. Cell experiments demonstrated that RCRR-containing serum could enhance the migratory capacity of brain microvascular endothelial cells and the expression of tight junction proteins following OGD injury, which may be associated with the downregulation of the PI3K/AKT/GSK3β pathway. This study elucidates the pharmacological mechanism of RCRR in protecting brain microvascular endothelial cells through network pharmacology, characterized by multiple components and targets. These findings were validated through in vitro experiments and provide important ideas and references for further research into the molecular mechanisms of RCRR in protecting brain microvascular endothelial cells.
Endothelial Cells/cytology*
;
Glycogen Synthase Kinase 3 beta/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Signal Transduction/drug effects*
;
Brain/metabolism*
;
Humans
;
Animals
;
Rhizome/chemistry*
;
Microvessels/metabolism*
;
Brain Ischemia/drug therapy*

Result Analysis
Print
Save
E-mail