1.Mechanism of Electroacupuncture Alleviating Inflammatory Pain in Rats by Regulating ErbB Subtypes in the Spinal Dorsal Horn
Yuxin WU ; Shuxin TIAN ; Zhengyi LYU ; Dingru JI ; Xingzhen LI ; Yue DONG ; Binyu ZHAO ; Yi LIANG ; Jianqiao FANG
Journal of Traditional Chinese Medicine 2026;67(1):69-78
ObjectiveTo observe the changes in the levels of different subtypes of epidermal growth factor receptor (ErbB), namely ErbB1, ErbB2, ErbB3, and ErbB4, in the spinal dorsal horn of inflammatory pain model rats, and to explore their mechanism of mediating hyperalgesia as well as the intervention mechanism of electroacupuncture at "Zusanli (ST 36)" and "Kunlun (BL 60)". MethodsThe study was divided into five parts. In experiment 1, 14 Sprague Dawley (SD) rats were randomly divided into control and inflammatory pain group (7 rats each group) to observe the pain behavior and the protein expression of different ErbB receptor subtypes in the spinal dorsal horn. In experiment 2, 30 rats were randomly divided into control group 1, inflammatory pain group 1, and low-, medium-, and high-concentration TX1-85-1 groups, with 6 rats in each group, to observe the effect of inhibiting spinal ErbB3 on inflammatory pain. In experiment 3, 12 rats were randomly divided into control virus group and ErbB3 knockdown virus group, with 6 rats in each group, to observe the effect of knocking down ErbB3 in the spinal dorsal horn on inflammatory pain. In experiment 4, 44 rats were randomly divided into control group 2, inflammatory pain group 2, electroacupuncture group, and sham electroacupuncture group, with 11 rats in each group, to observe the effect of electroacupuncture. In experiment 5, 40 rats were randomly divided into control group 3, inflammatory pain group 3, electroacupuncture group 1, and electroacupuncture + NRG1 group, with 10 rats in each group, to observe the effect of activating ErbB3 on electroacupuncture. A rat model of inflammatory pain was established by subcutaneous injection of 100 μl of complete Freund's adjuvant into the sole of the unilateral hind foot of SD rats. Rats in the low-, medium-, and high-concentration TX1-85-1 groups were intrathecally injected with ErbB3 inhibitor TX1-85-1 on day 5 to day 7 after modeling. Rats in the ErbB3 knockdown virus group were injected with ErbB3 knockdown virus packaged with adenovirus vector-based short hairpin RNA (shRNA) into the spinal dorsal horn in situ 3 weeks before modeling. Rats in each electroacupuncture group received electroacupuncture at bilateral "Zusanli (ST 36)" and "Kunlun (BL 60)" from day 1 to day 7 after modeling, with dense-sparse waves at a frequency of 2 Hz/100 Hz and a current of 0.5-1.5 mA for 30 minutes once a day. Rats in the electroacupuncture + NRG1 group were intrathecally injected with ErbB3 ligand recombinant human neuregulin-1 (NRG1) after electroacupuncture intervention from day 5 to day 7 after modeling. The mechanical withdrawal threshold and thermal withdrawal latency of rats were measured on day 1, 3, 5, and 7 after modeling to evaluate behavior, and Western Blot was used to detect the protein and phosphorylation levels of each ErbB subtype in the spinal dorsal horn. ResultsCompared with the control group, rats in the inflammatory pain group showed decreased mechanical withdrawal threshold and thermal withdrawal latency of rats, and increased expression of phosphorylated ErbB3 (p-ErbB3) protein in the spinal dorsal horn on days 1, 3, 5, and 7 after modeling (P<0.01). On day 5 and day 7 after modeling, compared with the inflammatory pain group 1, the mecha-nical withdrawal threshold and thermal withdrawal latency of rats in the medium- and high-concentration TX1-85-1 groups increased, and the expression of p-ErbB3 protein decreased (P<0.05). On day 1, 3, 5, and 7 after modeling, compared with the control virus group, the mechanical withdrawal threshold and thermal withdrawal latency of rats in the ErbB3 knockdown virus group increased (P<0.05). On day 5 and day 7 after modeling, compared with the inflammatory pain group 2 and the sham electroacupuncture group, the mechanical withdrawal threshold and thermal withdrawal latency of rats in the electroacupuncture group increased, and the expression of p-ErbB3 protein decreased (P<0.05). On day 5 and day 7 after modeling, compared with the electroacupuncture + NRG1 group, the mechanical withdrawal threshold and thermal withdrawal latency of rats in the electroacupuncture group 1 increased (P<0.05). ConclusionThe p-ErbB3 in the spinal dorsal horn involved in hyperalgesia in rats with inflammatory pain, and electroacupuncture at "Zusanli (ST 36)" and "Kunlun (BL 60)" can alleviate inflammatory pain by inhibiting the expression of p-ErbB3 protein in the spinal dorsal horn of rats.
2.Overview of the Research on Mechanisms and Application of Essential Oil of Aromatic Chinese Medicinals in Prevention of Respiratory Infectious Disease
Wan Ling LI ; Xinxin WU ; Xiaolei LI ; Mingzhao HAO ; Fang ZHANG ; Yue ZHANG ; Haoyue LI ; Jing ZHAO
Journal of Traditional Chinese Medicine 2025;66(6):638-644
Aromatic Chinese medicinal essential oils are volatile oils extracted from aromatic Chinese herbs, which can prevent and treat respiratory infectious diseases through multiple synergistic mechanisms including pathogen inhibition, immune regulation, and inflammatory response regulation. Essential oils are primarily used externally on the body to prevent infections and alleviate symptoms through methods like inhalation, smearing, topical application, bathing, gargling or as a suppository. They can also be utilized in the environment for disinfection and air purification, through methods like diffusion, vaporization, or spraying. The external application of essential oils extracted from Chinese aromatic herbs has the advantages of convenience, quick absorption, and simultaneous influence on both the body and mind. However, there are still challenges and deficiencies in aspects such as the positioning of functions, indications, safety, and the research on the mechanism of action. It has been proposed to combine the theory of aromatic Chinese medicinals with the characteristics of essential oils, and formulate prescriptions of Chinese medicinal essential oils under the principles of traditional Chinese medicine syndrome differentiation, and prevent and treat respiratory infectious diseases efficiently, accurately, and safely, thereby expanding the clinical application of aromatic Chinese medicinals and the preventive theory of traditional Chinese medicine.
3.Study on the stability of PBMCs recovered from leukocyte-depleted filter residues
Ju LIN ; Zhiqiang XIANG ; Dongfen DU ; Fang YUAN ; Miaoyu WANG ; Yue WU ; Kaiyu HUANG ; Lieyong SANG
Chinese Journal of Blood Transfusion 2025;38(5):723-733
Objective: To identify an optimal back-flush solution for leukocyte-depleted filters that maximizes peripheral blood mononuclear cell (PBMC) recovery with high viability, long-term storage stability, and sterility of the harvested residues, thereby providing a clinically translatable strategy. Methods: Three sterile bag-packaged solutions—Saline, Solvent, and Hanks' balanced salt solution (HBSS)—were used to back-flush randomly assigned leukocyte-depleted filters. Nucleated cell recovery rate and viability of the harvested residues were compared. The optimal solution identified was applied to an expanded sample set. PBMC viability and yield were evaluated after 1h vs 48h storage of the residues. PBMCs isolated from the residues were cryopreserved in liquid nitrogen for 1 month, followed by post-thaw comparisons of viability and T-cell expansion capacity. Results: The Solvent group achieved the highest and most consistent nucleated cell recovery rate. Post-flush recovery rate from filters after 400 mL whole blood processing was (21.3±1.6)% for the Solvent group, significantly higher than Saline group (19.2±6.3)% and HBSS group (11.2±5.0)%, with residues from all groups maintaining viability >90%. No biologically significant difference in residue viability was observed between 48h vs 1h storage groups (93.3±2.3)% vs (95.7±1.8)%). PBMC recovery rates from residues showed no statistical difference between 48h vs 1h storage groups [(48.2%±9.5%)vs (40.41%±8.35%), P>0.05], with (17.7±2.6)×10
cells. After 1-month cryopreservation and 10-day expansion, PBMCs isolated from 48-hour-stored residues retained (91.2±3.2)% viability and achieved a (61.9±15.9)-fold expansion. Conclusion: The bag-packaged Solvent, as a back-flush solution, enables sterile acquisition of leukocyte-depleted filter residues through closed-system tubing connections. These residues maintained PBMC viability and recovery rates after 48h storage at 2℃-8℃, with post-cryopreservation (1-month liquid nitrogen) viability and expansion capacity remaining stable. This protocol complies with blood bank regulatory criteria, addresses the concerns about the infectious window period in cell therapy raw materials, and provides a clinically translatable strategy for PBMC-based applications.
4.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
5.Application of Aromatic Inhalation Therapy in Preventing Respiratory Infectious Diseases Based on the Theory of "Aromatics Acting on the Spleen"
Xinxin WU ; Yue ZHANG ; Xiaolei LI ; Haoyue LI ; Fang ZHANG ; Nanjiang YU ; ZHAOJING
Journal of Traditional Chinese Medicine 2025;66(4):432-436
Aromatic inhalation therapy is a key traditional Chinese medicine (TCM) approach for preventing respiratory infectious diseases. Its foundational theory, "aromatics acting on the spleen", is deeply rooted in TCM principles and supported by modern medical research. The theory posits that the aromatic properties of medicinals primarily act on the spleen, and the aromatic inhalation therapy achieved its protective effects by modulation of the spleen and spleen channel to enhance the regulation of wei qi, striae and interstices. In TCM, the spleen is considered the mother of the lungs, with the function of nurturing lung; it is also seen as the source of wei qi, responsible for external defense; and the root of healthy qi, forming the foundation of acquired (postnatal) constitution. Thus, preventive strategies for respiratory infectious diseases focus on strengthening the spleen. From a modern medical perspective, the spleen's role in regulating lung immune responses, the shared immune functions of the respiratory and gastrointestinal mucosa, and the spleen's overall immune modulation provide scientific evidence for using aromatic inhalation therapy to prevent respiratory infections. Additionally, aromatic inhalation therapy offers several advantages, including direct action, rapid onset, minimal side effects, controllable risks, convenience, and ease of dissemination, making it a practical and effective preventive measure for respiratory infectious diseases.
6.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
7.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
8.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
9.Mechanism of Shenqi guben formula in improving cancer-related fatigue by regulating IL-17 signaling pathway
Xin LI ; Chongkai FANG ; Yue HUANG ; Yaoxuan LI ; Haifu HUANG ; Xianlin WU ; Zhesheng CHEN ; Meng LI
China Pharmacy 2025;36(14):1722-1729
OBJECTIVE To explore the mechanism of Shenqi guben formula (SQGB) in improving cancer-related fatigue (CRF) based on network pharmacology and cellular experiments. METHODS Active components of SQGB and CRF-related targets were identified on the basis of databases such as the Traditional Chinese Medicine Systems Pharmacology platform. An in vitro CRF cell model was established by inducing A549 cells with interleukin-17 (IL-17). Cells were treated with low (1.0 mg/mL) or high (1.5 mg/mL) concentrations of SQGB. The effects on cell viability, migration, apoptosis, inflammatory factors, mRNA expression, apoptosis-related proteins and key proteins 011) of IL-17 signaling pathway were evaluated using scratch assay, flow cytometry, ELISA, real-time fluorescent quantitative PCR and Western blot analysis. RESULTS SQGB contained 84 active components acting on 209 potential CRF targets. Among E-these, quercetin, kaempferol, and luteolin were identified as the core components of the compound. Core targets included tumor protein p53, AKT serine/threonine kinase 1, IL-6, and tumor necrosis factor (TNF). IL-17, TNF and phosphatidylinositol-3- kinase-serine/threonine protein kinase (PI3K/Akt) signaling pathways were identified as crucial pathways. Compared with IL-17 intervention group, the cell migration rate, B-cell lymphoma 2 (Bcl-2) protein expression, the levels of IL-6 and TNF-α in the supernatant, mRNA expression of IL-17 receptor A (IL-17RA), TNF-α, and IL-6, as well as the protein expression of IL-17RA and nuclear factor kappa-B p65 subunit (p65), and phosphorylated (p)-p65/p65 ratio in IL-17+SQGB low- and high- quality concentration groups were all significantly decreased or down-regulation (P<0.05); the apoptosis rate, expression levels of Bcl-2 associated X protein (Bax) and cleaved caspase-3 protein, the ratio of Bax/Bcl-2, the expression level of p-p38 protein, and the p- p38/p38 ratio were all significantly increased or up-regulated (P<0.05). Moreover, the improvement effects of these indicators were mostly better in the high-quality concentration groups compared to the low-quality concentration groups (P<0.05). CONCLUSIONS SQGB ameliorates CRF by regulating the IL-17 signaling pathway, inhibiting the expression of inflammatory factors, and activating p38 MAPK-dependent apoptosis pathway.
10.Effects and mechanisms of total flavones of Abelmoschus manihot combined with empagliflozin in attenuating diabetic tubulopathy through multiple targets based on mitochondrial homeostasis and ZBP1-mediated PANoptosis.
Si-Yu CHA ; Meng WANG ; Yi-Gang WAN ; Si-Ping DING ; Yu WANG ; Shi-Yu SHEN ; Wei WU ; Ying-Lu LIU ; Qi-Jun FANG ; Yue TU ; Hai-Tao TANG
China Journal of Chinese Materia Medica 2025;50(13):3738-3753
This study aimed to explore the mechanisms and molecular targets of total flavones of Abelmoschus manihot(TFA) plus empagliflozin(EM) in attenuating diabetic tubulopathy(DT) by targeting mitochondrial homeostasis and pyroptosis-apoptosis-necroptosis(PANoptosis). In the in vivo study, the authors established the DT rat models through a combination of uninephrectomy, administration of streptozotocin via intraperitoneal injections, and exposure to a high-fat diet. Following modeling successfully, the DT rat models received either TFA, EM, TFA+EM, or saline(as a vehicle) by gavage for eight weeks, respectively. In the in vitro study, the authors subjected the NRK52E cells with or without knock-down Z-DNA binding protein 1(ZBP1) to a high-glucose(HG) environment and various treatments including TFA, EM, and TFA+EM. In the in vivo and in vitro studies, The authors investigated the relative characteristics of renal tubular injury and renal tubular epithelial cells damage induced by reactive oxygen species(ROS), analyzed the relative characteristics of renal tubular PANoptosis and ZBP1-mediatted PANoptosis in renal tubular epithelial cells, and compared the relative characteristics of the protein expression levels of marked molecules of mitochondrial fission in the kidneys and mitochondrial homeostasis in renal tubular epithelial cells, respectively. Furthermore, in the network pharmacology study, the authors predicted and screened targets of TFA and EM using HERB and SwissTargetPrediction databases; The screened chemical constituents and targets of TFA and EM were constructed the relative network using Cytoscape 3.7.2 network graphics software; The relative targets of DT were integrated using OMIM and GeneCards databases; The intersecting targets of TFA, EM, and DT were enriched and analyzed signaling pathways by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG) software using DAVID database. In vivo study results showed that TFA+EM could improve renal tubular injury, the protein expression levels and characteristics of key signaling molecules in PANoptosis pathway in the kidneys, and the protein expression levels of marked molecules of mitochondrial fission in the kidneys. And that, the ameliorative effects in vivo of TFA+EM were both superior to TFA or EM. Network pharmacology study results showed that TFA+EM treated DT by regulating the PANoptosis signaling pathway. In vitro study results showed that TFA+EM could improve ROS-induced cell injury, ZBP1-mediatted PANoptosis, and mitochondrial homeostasis in renal tubular epithelial cells under a state of HG, including the protein expression levels of marked molecules of mitochondrial fission, mitochondrial ultrastructure, and membrane potential level. And that, the ameliorative effects in vitro of TFA+EM were both superior to TFA or EM. More importantly, using the NRK52E cells with knock-down ZBP1, the authors found that, indeed, ZBP1 was mediated PANoptosis in renal tubular epithelial cells as an upstream factor. In addition, TFA+EM could regulate the protein expression levels of marked signaling molecules of PANoptosis by targeting ZBP1. In summary, this study clarified that TFA+EM, different from TFA or EM, could attenuate DT with multiple targets by ameliorating mitochondrial homeostasis and inhibiting ZBP1-mediated PANoptosis. These findings provide the clear pharmacological evidence for the clinical treatment of DT with a novel strategy of TFA+EM, which is named "coordinated traditional Chinese and western medicine".
Animals
;
Rats
;
Mitochondria/metabolism*
;
Benzhydryl Compounds/administration & dosage*
;
Glucosides/administration & dosage*
;
Abelmoschus/chemistry*
;
Male
;
Homeostasis/drug effects*
;
Flavones/administration & dosage*
;
Rats, Sprague-Dawley
;
Diabetic Nephropathies/physiopathology*
;
Drugs, Chinese Herbal/administration & dosage*
;
DNA-Binding Proteins/genetics*
;
Humans
;
Apoptosis/drug effects*

Result Analysis
Print
Save
E-mail