1.Buqi Huoxue Compounds intervene with the expression of related factors and autophagy related proteins in a rat model of cerebral ischemia/reperfusion
Yuning CHEN ; Ying JIANG ; Xiangyu LIAO ; Qiongjun CHEN ; Liang XIONG ; Yue LIU ; Tong LIU
Chinese Journal of Tissue Engineering Research 2025;29(6):1152-1158
BACKGROUND:Buqi Huoxue Compounds have significant clinical efficacy in treating ischemic stroke with Qi deficiency and phlegm stasis;however,the exact mechanism of action is not clear. OBJECTIVE:To observe the effect of Buqi Huoxue Compounds on the expression of vascular endothelial growth factor,basic fibroblast growth factor,brain-derived neurotrophic factor and autophagy related protein Beclin1 and p62 in a rat model of cerebral ischemia/reperfusion. METHODS:Forty male Sprague-Dawley rats were randomly divided into sham operation group,model group,Buqi Huoxue Compounds group and autophagy inhibitor group,with 10 rats in each group.In the latter three groups,a rat model of cerebral ischemia/reperfusion injury was established.The Buqi Huoxue Compounds group was intragastrically given Buqi Huoxue Compounds(6.49 g/kg,administered three times a day)2 hours after reperfusion;the autophagy inhibitor group was intragastrically given Buqi Huoxue Compounds(6.49 g/kg,administered three times a day)2 hours after reperfusion and intraperitoneally given 3-methyladenine 2 hours before gavage and at days 1-3 of gavage.The sham operation group and model group were given equal amounts of saline by gavage for 7 consecutive days.Neurological function,cerebral infarct volume,brain tissue morphology and expression of vascular endothelial growth factor,basic fibroblast growth factor,brain-derived neurotrophic factor and autophagy-related proteins Beclin1 and p62 in the ischemic cortical region of rats were detected at 24 hours after the final administration. RESULTS AND CONCLUSION:Zea-Longa scoring results showed that the neurological function of rats was severely damaged after modeling and neurological deficit of rats in the Buqi Huoxue Compounds group was less than that in the model group and the autophagy inhibitor group(P<0.05).TTC staining showed that cerebral infarct foci were observed in the model group,Buqi Huoxue Compounds group,and autophagy inhibitor group,and the cerebral infarct volume in the Buqi Huoxue Compounds group was lower than that in the model group and the autophagy inhibitor group(P<0.05).The results of hematoxylin-eosin staining in ischemic brain tissues showed that there were large gaps between nerve cells in the model group and cell arrangement was not neat,and cytoplasmic agglutination and pyknosis were observed.Immunohistochemical staining results showed that vascular endothelial growth factor was mostly expressed in neuronal cells,glial cells and capillary endothelium;basic fibroblast growth factor and brain-derived neurotrophic factor were mostly expressed in neuronal cells and glial cells;and there was no significant difference in the expression of vascular endothelial growth factor,basic fibroblast growth factor,and brain-derived neurotrophic factor among the four groups(P>0.05).The results of western blot assay showed that compared with the sham operation group,Beclin1 protein expression was decreased(P<0.05)and p62 protein expression was elevated(P<0.05)in the model group;compared with the model group,Beclin1 protein expression was increased(P<0.05)and p62 protein expression was reduced(P<0.05)in the Buqi Huoxue Compounds group;compared with the Buqi Huoxue Compounds group,Beclin1 protein expression was decreased(P<0.05)and p62 protein expression was elevated(P<0.05)in the autophagy inhibitor group.To conclude,Buqi Huoxue Compounds attenuate cerebral ischemia-reperfusion injury in rats by promoting autophagy.
2.An excerpt of ESMO clinical practice guideline interim update on the management of biliary tract cancer in 2025
Delong QIN ; Yue TANG ; Zonglong LI ; Jialu CHEN ; Zhaohui TANG ; Zhiwei QUAN
Journal of Clinical Hepatology 2025;41(4):625-627
In January 2025, the European Society for Medical Oncology (ESMO) released the ESMO clinical practice guideline interim update on the management of biliary tract cancer as a supplementary update to Biliary tract cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up published in November 2022. This interim update mainly revises the latest evidence-based medical recommendations in the key fields of molecular diagnostics and clinical management since the release of the original guidelines, and it is not a comprehensive update of the entire document. This article summarizes and makes an excerpt of the new recommendations from this interim update.
3.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
4.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
5.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
6.Effect of electroacupuncture on learning and memory abilities in vascular dementia rats via the NCOA4/FTH1 signaling pathway-mediated ferritinophagy.
Wei SUN ; Yinghua CHEN ; Tong WU ; Hongxu ZHAO ; Haoyu WANG ; Ruiqi QIN ; Xiaoqing SU ; Junfeng LI ; Yuanyu SONG ; Yue MIAO ; Xinran LI ; Yusheng HAN
Chinese Acupuncture & Moxibustion 2025;45(9):1271-1280
OBJECTIVE:
To observe the effect of electroacupuncture at "Sishencong" (EX-HN1) and "Fengchi" (GB20) on hippocampal neuronal ferritinophagy mediated by the nuclear receptor coactivator 4 (NCOA4)/ferritin heavy chain 1 (FTH1) signaling pathway in vascular dementia (VD) rats, and to explore the potential mechanisms of electroacupuncture for VD.
METHODS:
A total of 60 male rats of SPF grade were randomly divided into a blank group (12 rats), a sham surgery group (12 rats) and a modeling group (36 rats). In the modeling group, the modified 4-vessel occlusion method was used to establish the VD model. The 24 successfully modeled rats were randomly divided into a model group and an electroacupuncture group, with 12 rats in each group. In the electroacupuncture group, electroacupuncture was applied at left and right "Sishencong" (EX-HN1), and bilateral "Fengchi" (GB20), with continuous wave, in frequency of 2 Hz and current intensity of 1 mA, 30 min a time, once daily for 21 consecutive days. The learning and memory abilities were assessed using the Morris water maze test before modeling, after modeling and after intervention, as well as the novel object recognition test after intervention. After intervention, the neuronal morphology in the hippocampus was observed by Nissl staining; the iron deposition was observed by Prussian blue staining; the reactive oxygen species (ROS) level was detected by dihydroethidium (DHE) fluorescence staining; the levels of iron, malondialdehyde (MDA) and superoxide dismutase (SOD) in the hippocampal tissue were measured by the colorimetric assay, TBA method, and WST-1 method, respectively; the positive expression of NCOA4, FTH1 and glutathione peroxidase 4 (GPX4) was detected by immunohistochemistry; the protein expression of NCOA4, FTH1, GPX4, and the ratio of microtubule-associated protein 1 light chain 3B (LC3B) Ⅱ/Ⅰ in the hippocampus were detected by Western blot.
RESULTS:
Compared with the sham surgery group, in the model group, the escape latency was prolonged, and the number of platform crossings reduced (P<0.01), the recognition index (RI) was decreased (P<0.01); the hippocampal neurons displayed a blurred laminar structure, disorganized cellular arrangement, and the number of Nissl bodies was decreased (P<0.01); the percentage of iron deposition area in the hippocampus was increased (P<0.01); in the hippocampus, the levels of ROS, iron, MDA, and the protein expression of NCOA4, as well as the LC3B Ⅱ/Ⅰ ratio were increased (P<0.01), the SOD level, and the protein expression of FTH1 and GPX4 were decreased (P<0.01). Compared with the model group, in the electroacupuncture group, the escape latency was shortened and the number of platform crossings was increased (P<0.01), the RI was increased (P<0.01); the hippocampal neurons exhibited more regular morphology, better-organized cellular structure, and the number of Nissl bodies was increased (P<0.05); the percentage of iron deposition area in the hippocampus reduced (P<0.01); in the hippocampus, the levels of ROS, iron, MDA, and the protein expression of NCOA4, as well as the LC3B Ⅱ/Ⅰ ratio were decreased (P<0.01, P<0.05), the SOD level, and the protein expression of FTH1 and GPX4 were increased (P<0.01).
CONCLUSION
Electroacupuncture at "Sishencong" (EX-HN1) and "Fengchi" (GB20) can improve learning and memory abilities in VD rats, and its mechanism may be associated with the regulation of the hippocampal NCOA4/FTH1 signaling pathway, inhibition of ferritinophagy, and alleviation of oxidative stress damage.
Animals
;
Electroacupuncture
;
Dementia, Vascular/genetics*
;
Male
;
Rats
;
Signal Transduction
;
Humans
;
Memory
;
Rats, Sprague-Dawley
;
Nuclear Receptor Coactivators/genetics*
;
Ferritins/genetics*
;
Learning
;
Hippocampus/metabolism*
;
Acupuncture Points
7.Effect and mechanism of Shenmai Injection in regulating copper death in myocardial fibrosis in rats.
Si-Tong LIU ; Zhi-Yuan GUO ; Yue ZOU ; Zhi-An CHEN ; Shuai ZHANG ; Yan WANG ; Li-Ying WANG ; Yi-Hong ZHANG ; Zhi LIU
China Journal of Chinese Materia Medica 2025;50(6):1601-1609
Based on copper death, this study investigates the effect and mechanism of Shenmai Injection on isoproterenol(ISO)-induced myocardial fibrosis(MF) in rats. SPF-grade male SD rats were randomly divided into a normal group, model group, captopril(5 mg·kg~(-1)) positive control group, and Shenmai Injection low(6 mL·kg~(-1)), medium(9 mL·kg~(-1)), and high(12 mL·kg~(-1)) dose groups. Except for the normal group, the rats in the other groups were subcutaneously injected with ISO(5 mg·kg~(-1)) once a day for 10 consecutive days to establish an MF model. Starting from the second day after successful modeling, intraperitoneal injections of the respective treatments were administered for 28 consecutive days. Hematoxylin-eosin(HE) and Masson staining were used to observe pathological changes and fibrosis levels in the myocardial tissue. Colorimetry was employed to detect serum Cu~(2+) concentration in rats. The levels of inflammatory cytokines interleukin-6(IL-6), interleukin-1β(IL-1β), interleukin-18(IL-18), tumor necrosis factor-α(TNF-α), as well as mitochondrial energy metabolites adenosine triphosphate(ATP), adenosine diphosphate(ADP), and adenosine monophosphate(AMP) in serum were measured using enzyme-linked immunosorbent assay(ELISA). Western blot was performed to detect the expression of collagen Ⅰ(Col-Ⅰ), collagen Ⅲ(Col-Ⅲ), and copper death-related proteins dihydrolipoamide acetyltransferase(DLAT), ferredoxin 1(FDX1), lipoic acid synthetase(LIAS), and heat shock protein 70(HSP70) in myocardial tissue. Immunofluorescence was used to detect the expression of DLAT, FDX1, and HSP70, while immunohistochemistry was conducted to examine the expressions of DLAT, FDX1, LIAS, and HSP70. The results showed that, compared to the model group, the myocardial structure disorder and collagen fiber deposition in the drug treatment groups were significantly improved, the cardiac index level was reduced, serum Cu~(2+), IL-6, IL-1β, IL-18, TNF-α, ADP, and AMP levels were significantly decreased, ATP levels were significantly increased, and the expressions of Col-Ⅰ, Col-Ⅲ, and HSP70 proteins in myocardial tissue were significantly reduced, while the expressions of DLAT, FDX1, and LIAS proteins were significantly elevated. In conclusion, Shenmai Injection effectively alleviates myocardial structure disorder and interstitial collagen fiber deposition in ISO-induced MF rats, promotes copper excretion, and reduces copper death in the ISO-induced rat MF model.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Myocardium/metabolism*
;
Drug Combinations
;
Fibrosis/metabolism*
;
Copper/blood*
;
Cardiomyopathies/genetics*
;
Humans
8.Mechanism of Tougu Xiaotong Capsules regulating Malat1 and mi R-16-5p ceRNA to alleviate "cholesterol-iron" metabolism disorder in osteoarthritis chondrocytes.
Chang-Long FU ; Yan-Ming LIN ; Shu-Jie LAN ; Chao LI ; Zi-Hong ZHANG ; Yue CHEN ; Ying-Rui TONG ; Yan-Feng HUANG
China Journal of Chinese Materia Medica 2025;50(15):4363-4371
From the perspective of competitive endogenous RNA(ceRNA) constructed by metastasy-associated lung adenocarcinoma transcript 1(Malat1) and microRNA 16-5p(miR-16-5p), the improvement mechanism of Tonggu Xiaotong Capsules(TGXTC) on the imbalance and disorder of "cholesterol-iron" metabolism in chondrocytes of osteoarthritis(OA) was explored. In vivo experiments, 60 8-week-old C57BL/6 mice were acclimatized and fed for 1 week and then randomly divided into two groups: blank group(12 mice) and modeling group(48 mice). The animals in modeling group were anesthetized by 5% isoflurane inhalation, which was followed by the construction of OA model. They were then randomly divided into model group, TGXTC group, Malat1 overexpression group, and TGXTC+Malat1 overexpression(TGXTC+Malat1-OE) group, with 12 mice in each group. The structural changes of mouse cartilage tissues were observed by Masson staining after the intervention in each group. RT-PCR was employed to detect the mRNA levels of Malat1 and miR-16-5p in cartilage tissues. Western blot was used to analyze the protein expression of ATP-binding cassette transporter A1(ABCA1), sterol regulatory element-binding protein(SREBP), cytochrome P450 family 7 subfamily B member 1(CYP7B1), CCAAT/enhancer-binding protein homologous protein(CHOP), acyl-CoA synthetase long-chain family member 4(ACSL4), and glutathione peroxidase 4(GPX4) in cartilage tissues. In vitro experiments, mouse chondrocytes were induced by thapsigargin(TG), and the combination of Malat1 and miR-16-5p was detected by double luciferase assay. The fluorescence intensity of Malat1 in chondrocytes was determined by fluorescence in situ hybridization. The miR-16-5p inhibitory chondrocyte model was constructed. RT-PCR was used to analyze the levels of Malat1 and miR-16-5p in chondrocytes under the inhibition of miR-16-5p. Western blot was adopted to analyze the regulation of TG-induced chondrocyte proteins ABCA1, SREBP, CYP7B1, CHOP, ACSL4, and GPX4 by TGXTC under the inhibition of miR-16-5p. The results of in vivo experiments showed that,(1) compared with model group, TGXTC group exhibited a relatively complete cartilage layer structure. Compared with Malat1-OE group, TGXTC+Malat1-OE group showed alleviated cartilage surface damage.(2) Compared with model group, TGXTC group had a significantly decreased Malat1 mRNA level and an increased miR-16-5p mRNA level in mouse cartilage tissues(P<0.01).(3) Compared with the model group, the protein levels of ABCA1 and GPX4 in the cartilage tissue of mice in the TGXTC group increased, while the protein levels of SREBP, CYP7B1, CHOP and ACSL4 decreased(P<0.01). The results of in vitro experiments show that,(1) dual-luciferase was used to evaluate that miR-16-5p has a targeting effect on the Malat1 gene.(2)Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group had an increased mRNA level of miR-16-5p and an decreased mRNA level of Malat1(P<0.01).(3) Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group exhibited increased expression of ABCA1 and GPX4 proteins and decreased expression of SREBP, CYP7B1, CHOP, and ACSL4 proteins(P<0.01). The reasults showed that TGXTC can regulate the ceRNA of Malat1 and miR-16-5p to alleviate the "cholesterol-iron" metabolism disorder of osteoarthritis chondrocytes.
Animals
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Chondrocytes/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice, Inbred C57BL
;
Mice
;
Osteoarthritis/drug therapy*
;
Iron/metabolism*
;
Male
;
Cholesterol/metabolism*
;
Humans
;
Capsules
;
RNA, Competitive Endogenous
9.Exploring urban versus rural disparities in atrial fibrillation: prevalence and management trends among elderly Chinese in a screening study.
Wei ZHANG ; Yi CHEN ; Lei-Xiao HU ; Jia-Hui XIA ; Xiao-Fei YE ; Wen-Yuan-Yue WANG ; Xin-Yu WANG ; Quan-Yong XIANG ; Qin TAN ; Xiao-Long WANG ; Xiao-Min YANG ; De-Chao ZHAO ; Xin CHEN ; Yan LI ; Ji-Guang WANG ; FOR THE IMPRESSION INVESTIGATORS AND COORDINATORS
Journal of Geriatric Cardiology 2025;22(2):246-254
BACKGROUND:
Atrial fibrillation (AF) is a common cardiac arrhythmia in the elderly. This study aimed to evaluate urban-rural disparities in its prevalence and management in elderly Chinese.
METHODS:
Consecutive participants aged ≥ 65 years attending outpatient clinics were enrolled for AF screening using handheld single-lead electrocardiogram (ECG) from April 2017 to December 2022. Each ECG rhythm strip was reviewed from the research team. AF or uninterpretable single-lead ECGs were referred for 12-lead ECG. Primary study outcome comparison was between rural and urban areas for the prevalence of AF. The Student's t-test was used to compare mean values of clinical characteristics between rural and urban participants, while the Pearson's chi-square test was used to compare between-group proportions. Multivariate stepwise logistic regression analysis was performed to estimate the association between AF and various patient characteristics.
RESULTS:
The 29,166 study participants included 13,253 men (45.4%) and had a mean age of 72.2 years. The 7073 rural participants differed significantly (P ≤ 0.02) from the 22,093 urban participants in several major characteristics, such as older age, greater body mass index, and so on. The overall prevalence of AF was 4.6% (n = 1347). AF was more prevalent in 7073 rural participants than 22,093 urban participants (5.6% vs. 4.3%, P < 0.01), before and after adjustment for age, body mass index, blood pressure, pulse rate, cigarette smoking, alcohol consumption and prior medical history. Multivariate logistic regression analysis identified overweight/obesity (OR = 1.35, 95% CI: 1.17-1.54) in urban areas and cigarette smoking (OR = 1.62, 95% CI: 1.20-2.17) and alcohol consumption (OR = 1.42, 95% CI: 1.04-1.93) in rural areas as specific risk factors for prevalent AF. In patients with known AF in urban areas (n = 781) and rural areas (n = 338), 60.6% and 45.9%, respectively, received AF treatment (P < 0.01), and only 22.4% and 17.2%, respectively, received anticoagulation therapy (P = 0.05).
CONCLUSIONS
In China, there are urban-rural disparities in AF in the elderly, with a higher prevalence and worse management in rural areas than urban areas. Our study findings provide insight for health policymakers to consider urban-rural disparity in the prevention and treatment of AF.
10.Cation Channel TMEM63A Autonomously Facilitates Oligodendrocyte Differentiation at an Early Stage.
Yue-Ying WANG ; Dan WU ; Yongkun ZHAN ; Fei LI ; Yan-Yu ZANG ; Xiao-Yu TENG ; Linlin ZHANG ; Gui-Fang DUAN ; He WANG ; Rong XU ; Guiquan CHEN ; Yun XU ; Jian-Jun YANG ; Yongguo YU ; Yun Stone SHI
Neuroscience Bulletin 2025;41(4):615-632
Accurate timing of myelination is crucial for the proper functioning of the central nervous system. Here, we identified a de novo heterozygous mutation in TMEM63A (c.1894G>A; p. Ala632Thr) in a 7-year-old boy exhibiting hypomyelination. A Ca2+ influx assay suggested that this is a loss-of-function mutation. To explore how TMEM63A deficiency causes hypomyelination, we generated Tmem63a knockout mice. Genetic deletion of TMEM63A resulted in hypomyelination at postnatal day 14 (P14) arising from impaired differentiation of oligodendrocyte precursor cells (OPCs). Notably, the myelin dysplasia was transient, returning to normal levels by P28. Primary cultures of Tmem63a-/- OPCs presented delayed differentiation. Lentivirus-based expression of TMEM63A but not TMEM63A_A632T rescued the differentiation of Tmem63a-/- OPCs in vitro and myelination in Tmem63a-/- mice. These data thus support the conclusion that the mutation in TMEM63A is the pathogenesis of the hypomyelination in the patient. Our study further demonstrated that TMEM63A-mediated Ca2+ influx plays critical roles in the early development of myelin and oligodendrocyte differentiation.
Animals
;
Cell Differentiation/physiology*
;
Oligodendroglia/metabolism*
;
Mice, Knockout
;
Mice
;
Male
;
Myelin Sheath/metabolism*
;
Humans
;
Child
;
Cells, Cultured
;
Oligodendrocyte Precursor Cells/metabolism*

Result Analysis
Print
Save
E-mail