1.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
2.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
3.Herbal Textual Research on Tribuli Fructus and Astragali Complanati Semen in Famous Classical Formulas
Jiaqin MOU ; Wenjing LI ; Yanzhu MA ; Yue ZHOU ; Wenfeng YAN ; Shijun YANG ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):241-251
By systematically combing ancient and modern literature, this paper examined Tribuli Fructus and Astragali Complanati Semen(ACS) used in the famous classical formulas from the aspects of name, origin, production area, harvesting and processing, clinical efficacy, so as to provide a basis for the development of famous classical formulas containing such medicinal materials. The results showed that the names of Tribuli Fructus in the past dynasties were mostly derived from its morphology, and there were nicknames such as Baijili, Cijili and Dujili. The name of ACS in the past dynasties were mostly originated from its production areas, and there were nicknames such as Baijili, Shayuan Jili and Tongjili. Because both of them had the name of Baijili, confusion began to appear in the Song dynasty. In ancient and modern times, the main origin of Tribuli Fructus were Tribulus terrestris, and ancient literature recorded the genuine producing areas of Tribuli Fructus was Dali in Shaanxi and Tianshui in Gansu, but today it is mainly cultivated in Anhui and Shandong. The fruit is the medicinal part, harvested in autumn throughout history. There is no description of the quality of Tribuli Fructus in ancient times, and the plump, firm texture, grayish-white color is the best in modern times. Traditional processing methods for Tribuli Fructus included stir-frying and wine processing, while modern commonly used is purified, fried and salt-processed. The ancient records of Tribuli Fructus were spicy, bitter, and warm in nature, with modern research adding that it is slightly toxic. The main effects of ancient and modern times include treating wind disorders, improving vision, promoting muscle growth, and treating vitiligo. The mainstream base of ACS used throughout history is Astragalus complanatus. Ancient texts indicated ACS primarily originated from Shaanxi province. Today, the finest varieties come from Tongguan and Dali in Shaanxi. The medicinal part is the seed, traditionally harvested in autumn. Modern harvesting occurs in late autumn or early winter, followed by sun-drying. Ancient texts valued seeds with a fragrant aroma as superior, while modern standards prioritize plump, uniform and free of impurities. Traditional processing methods for ACS included frying until blackened and wine-frying, while modern practice commonly employs purification methods. In terms of medicinal properties, the ancient and modern records are sweet and warm in nature. Due to originally classified under Tribuli Fructus, its effects were thus regarded as equivalent to those of Tribuli Fructus, serving as the medicine for treating wind disorders, additional functions included tonifying the kidneys and treating vitiligo. The present record of its efficacy is to tonify the kidney and promote Yang, solidify sperm and reduce urine, nourish the liver and brighten the eye, etc. Based on the textual research results, it is suggested that when developing the famous classical formulas of Tribuli Fructus medicinal materials, we should pay attention to the specific reference object of Baijili, T. terrestris and A. complanatus should be identified and selected, and the processing method should be in accordance with the requirements of the formulas.
4.Lipid-lowering activity of Panax notoginseng flowers and rhizomes on hyperlipidemia rats based on chemical composition similarity.
Meng YE ; Jin-Wen MA ; Hai-Yue ZHONG ; Yu-Ling XU
China Journal of Chinese Materia Medica 2025;50(3):776-786
Based on the similarity of chemical constituents between Panax notoginseng flowers and rhizomes, this study investigated their lipid-lowering effects and impacts on the intestinal flora of rats. The main components of P. notoginseng flowers and rhizomes were detected by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS) to compare their chemical similarities. A hyperlipidemia rat model was induced using a high-fat diet. After successful modeling, the rats were divided into the blank control group, blank administration group(0.090 g·kg~(-1)), model group, low-(0.045 g·kg~(-1)), medium-(0.090 g·kg~(-1)), high-dose(0.180 g·kg~(-1)) P. notoginseng flower group, P. notoginseng rhizome group(0.270 g·kg~(-1)), and simvastatin group(0.900 mg·kg~(-1)). After modeling, the rats were given intragastric administration for 3 weeks, once daily, while their body weight was recorded regularly. Before the last administration, fresh feces were collected for analysis of changes in intestinal flora using 16S rDNA high-throughput sequencing technology. One hour after the last administration, the rats were anesthetized with 1% pentobarbital sodium, and blood was collected from the abdominal aorta. Serum biochemical indexes were detected using an automatic biochemical analyzer. Organs(heart, liver, spleen, lung, and kidney) were harvested, and organ index were calculated. Liver tissue pathology was assessed through HE staining and oil red O staining. The results indicated that there were 33 identical chemical constituents in P. notoginseng flowers and rhizomes, accounting for 75.00% of the total constituents. After treatment, high-dose P. notoginseng flower group and P. notoginseng rhizome group exhibited similar effects on body weight, serum biochemical indexes, and liver histopathological conditions. Compared with model control group, the abundance of Firmicutes and Actinobacteria increased in high-dose P. notoginseng flower and rhizome groups, while the abundance of Bacteroidetes and Thermodesulfobacteria decreased. Cluster analysis showed no significant difference between the two groups. Both P. notoginseng flowers and rhizomes possess similar chemical components and lipid-lowering effects, and they can regulate the intestinal flora imbalance caused by hyperlipidemia, indicating their potential for use in hyperlipidemia treatment.
Animals
;
Hyperlipidemias/microbiology*
;
Panax notoginseng/chemistry*
;
Rats
;
Rhizome/chemistry*
;
Male
;
Flowers/chemistry*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Hypolipidemic Agents/administration & dosage*
;
Gastrointestinal Microbiome/drug effects*
;
Humans
;
Liver/drug effects*
5.Expert consensus on apical microsurgery.
Hanguo WANG ; Xin XU ; Zhuan BIAN ; Jingping LIANG ; Zhi CHEN ; Benxiang HOU ; Lihong QIU ; Wenxia CHEN ; Xi WEI ; Kaijin HU ; Qintao WANG ; Zuhua WANG ; Jiyao LI ; Dingming HUANG ; Xiaoyan WANG ; Zhengwei HUANG ; Liuyan MENG ; Chen ZHANG ; Fangfang XIE ; Di YANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Shuang PAN ; Deqin YANG ; Weidong NIU ; Qi ZHANG ; Shuli DENG ; Jingzhi MA ; Xiuping MENG ; Jian YANG ; Jiayuan WU ; Yi DU ; Junqi LING ; Lin YUE ; Xuedong ZHOU ; Qing YU
International Journal of Oral Science 2025;17(1):2-2
Apical microsurgery is accurate and minimally invasive, produces few complications, and has a success rate of more than 90%. However, due to the lack of awareness and understanding of apical microsurgery by dental general practitioners and even endodontists, many clinical problems remain to be overcome. The consensus has gathered well-known domestic experts to hold a series of special discussions and reached the consensus. This document specifies the indications, contraindications, preoperative preparations, operational procedures, complication prevention measures, and efficacy evaluation of apical microsurgery and is applicable to dentists who perform apical microsurgery after systematic training.
Microsurgery/standards*
;
Humans
;
Apicoectomy
;
Contraindications, Procedure
;
Tooth Apex/diagnostic imaging*
;
Postoperative Complications/prevention & control*
;
Consensus
;
Treatment Outcome
6.Expert consensus on pulpotomy in the management of mature permanent teeth with pulpitis.
Lu ZHANG ; Chen LIN ; Zhuo CHEN ; Lin YUE ; Qing YU ; Benxiang HOU ; Junqi LING ; Jingping LIANG ; Xi WEI ; Wenxia CHEN ; Lihong QIU ; Jiyao LI ; Yumei NIU ; Zhengmei LIN ; Lei CHENG ; Wenxi HE ; Xiaoyan WANG ; Dingming HUANG ; Zhengwei HUANG ; Weidong NIU ; Qi ZHANG ; Chen ZHANG ; Deqin YANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Jingzhi MA ; Shuli DENG ; Xiaoli XIE ; Xiuping MENG ; Jian YANG ; Xuedong ZHOU ; Zhi CHEN
International Journal of Oral Science 2025;17(1):4-4
Pulpotomy, which belongs to vital pulp therapy, has become a strategy for managing pulpitis in recent decades. This minimally invasive treatment reflects the recognition of preserving healthy dental pulp and optimizing long-term patient-centered outcomes. Pulpotomy is categorized into partial pulpotomy (PP), the removal of a partial segment of the coronal pulp tissue, and full pulpotomy (FP), the removal of whole coronal pulp, which is followed by applying the biomaterials onto the remaining pulp tissue and ultimately restoring the tooth. Procedural decisions for the amount of pulp tissue removal or retention depend on the diagnostic of pulp vitality, the overall treatment plan, the patient's general health status, and pulp inflammation reassessment during operation. This statement represents the consensus of an expert committee convened by the Society of Cariology and Endodontics, Chinese Stomatological Association. It addresses the current evidence to support the application of pulpotomy as a potential alternative to root canal treatment (RCT) on mature permanent teeth with pulpitis from a biological basis, the development of capping biomaterial, and the diagnostic considerations to evidence-based medicine. This expert statement intends to provide a clinical protocol of pulpotomy, which facilitates practitioners in choosing the optimal procedure and increasing their confidence in this rapidly evolving field.
Humans
;
Calcium Compounds/therapeutic use*
;
Consensus
;
Dental Pulp
;
Dentition, Permanent
;
Oxides/therapeutic use*
;
Pulpitis/therapy*
;
Pulpotomy/standards*
7.Expert consensus on intentional tooth replantation.
Zhengmei LIN ; Dingming HUANG ; Shuheng HUANG ; Zhi CHEN ; Qing YU ; Benxiang HOU ; Lihong QIU ; Wenxia CHEN ; Jiyao LI ; Xiaoyan WANG ; Zhengwei HUANG ; Jinhua YU ; Jin ZHAO ; Yihuai PAN ; Shuang PAN ; Deqin YANG ; Weidong NIU ; Qi ZHANG ; Shuli DENG ; Jingzhi MA ; Xiuping MENG ; Jian YANG ; Jiayuan WU ; Lan ZHANG ; Jin ZHANG ; Xiaoli XIE ; Jinpu CHU ; Kehua QUE ; Xuejun GE ; Xiaojing HUANG ; Zhe MA ; Lin YUE ; Xuedong ZHOU ; Junqi LING
International Journal of Oral Science 2025;17(1):16-16
Intentional tooth replantation (ITR) is an advanced treatment modality and the procedure of last resort for preserving teeth with inaccessible endodontic or resorptive lesions. ITR is defined as the deliberate extraction of a tooth; evaluation of the root surface, endodontic manipulation, and repair; and placement of the tooth back into its original socket. Case reports, case series, cohort studies, and randomized controlled trials have demonstrated the efficacy of ITR in the retention of natural teeth that are untreatable or difficult to manage with root canal treatment or endodontic microsurgery. However, variations in clinical protocols for ITR exist due to the empirical nature of the original protocols and rapid advancements in the field of oral biology and dental materials. This heterogeneity in protocols may cause confusion among dental practitioners; therefore, guidelines and considerations for ITR should be explicated. This expert consensus discusses the biological foundation of ITR, the available clinical protocols and current status of ITR in treating teeth with refractory apical periodontitis or anatomical aberration, and the main complications of this treatment, aiming to refine the clinical management of ITR in accordance with the progress of basic research and clinical studies; the findings suggest that ITR may become a more consistent evidence-based option in dental treatment.
Humans
;
Tooth Replantation/methods*
;
Consensus
;
Periapical Periodontitis/surgery*
8.Expert consensus on digital restoration of complete dentures.
Yue FENG ; Zhihong FENG ; Jing LI ; Jihua CHEN ; Haiyang YU ; Xinquan JIANG ; Yongsheng ZHOU ; Yumei ZHANG ; Cui HUANG ; Baiping FU ; Yan WANG ; Hui CHENG ; Jianfeng MA ; Qingsong JIANG ; Hongbing LIAO ; Chufan MA ; Weicai LIU ; Guofeng WU ; Sheng YANG ; Zhe WU ; Shizhu BAI ; Ming FANG ; Yan DONG ; Jiang WU ; Lin NIU ; Ling ZHANG ; Fu WANG ; Lina NIU
International Journal of Oral Science 2025;17(1):58-58
Digital technologies have become an integral part of complete denture restoration. With advancement in computer-aided design and computer-aided manufacturing (CAD/CAM), tools such as intraoral scanning, facial scanning, 3D printing, and numerical control machining are reshaping the workflow of complete denture restoration. Unlike conventional methods that rely heavily on clinical experience and manual techniques, digital technologies offer greater precision, predictability, and efficacy. They also streamline the process by reducing the number of patient visits and improving overall comfort. Despite these improvements, the clinical application of digital complete denture restoration still faces challenges that require further standardization. The major issues include appropriate case selection, establishing consistent digital workflows, and evaluating long-term outcomes. To address these challenges and provide clinical guidance for practitioners, this expert consensus outlines the principles, advantages, and limitations of digital complete denture technology. The aim of this review was to offer practical recommendations on indications, clinical procedures and precautions, evaluation metrics, and outcome assessment to support digital restoration of complete denture in clinical practice.
Humans
;
Denture, Complete
;
Computer-Aided Design
;
Denture Design/methods*
;
Consensus
;
Printing, Three-Dimensional
9.Deciphering Virulence Factors of Hyper-Virulent Pseudomonas aeruginosa Associated with Meningitis.
Li Ling XIE ; Shuo LIU ; Yu Fan WANG ; Ming Chun LI ; Zhen Hua HUANG ; Yue MA ; Qi Lin YU
Biomedical and Environmental Sciences 2025;38(7):856-866
OBJECTIVE:
Pseudomonas aeruginosa( P. aeruginosa) is a prevalent pathogenic bacterium involved in meningitis; however, the virulence factors contributing to this disease remain poorly understood.
METHODS:
The virulence of the P. aeruginosa A584, isolated from meningitis samples, was evaluated by constructing in vitro blood-brain barrier and in vivo systemic infection models. qPCR, whole-genome sequencing, and drug efflux assays of A584 were performed to analyze the virulence factors.
RESULTS:
Genomic sequencing showed that A584 formed a phylogenetic cluster with the reference strains NY7610, DDRC3, Pa58, and Pa124. Its genome includes abundant virulence factors, such as hemolysin, the Type IV secretion system, and pyoverdine. A584 is a multidrug-resistant strain, and its wide-spectrum resistance is associated with enhanced drug efflux. Moreover, this strain caused significantly more severe damage to the blood-brain barrier than the standard strain, PAO1. qPCR assays further revealed the downregulation of the blood-brain barrier-associated proteins Claudin-5 and Occludin by A584. During systemic infection, A584 exhibited a higher capacity of brain colonization than PAO1 (37.1 × 10 6 CFU/g brain versus 2.5 × 10 6 CFU/g brain), leading to higher levels of the pro-inflammatory factors IL-1β and TNF-α.
CONCLUSION
This study sheds light on the virulence factors of P. aeruginosa involved in meningitis.
Pseudomonas aeruginosa/genetics*
;
Virulence Factors/metabolism*
;
Animals
;
Virulence
;
Mice
;
Pseudomonas Infections/microbiology*
;
Blood-Brain Barrier/microbiology*
;
Humans
;
Female
10.The efficacy and safety of protein A immunoadsorption combined with rituximab treatment for highly sensitized patients undergoing haplo-hematopoietic stem cell transplantation
Ling LI ; Wenjuan ZHU ; Qian ZHU ; Shiyuan ZHOU ; Chao MA ; Jun WANG ; Xiaohui HU ; Yue HAN ; Ying WANG ; Xiaowen TANG ; Xiao MA ; Suning CHEN ; Huiying QIU ; Luyao CHEN ; Jun HE ; Depei WU ; Xiaojin WU
Chinese Journal of Hematology 2024;45(5):468-474
Objective:To investigate the efficacy and safety of protein A immunoadsorption (PAIA) combined with rituximab (RTX) in highly sensitized patients who underwent haplo-hematopoietic stem cell transplantation (haplo-HSCT) .Methods:The clinical data of 56 highly sensitized patients treated with PAIA and RTX before haplo-HSCT at the First Affiliated Hospital of Soochow University and Soochow Hopes Hematonosis Hospital between March 2021 and June 2023 were retrospectively analyzed. The number of human leukocyte antigen (HLA) antibody types and the mean fluorescence intensity (MFI), humoral immunity, adverse reactions during adsorption, and survival within 100 days before and after adsorption were measured.Results:After receiving the PAIA treatment, the median MFI of patients containing only HLA Ⅰ antibodies decreased from 7 859 (3 209-12 444) to 3 719 (0-8 275) ( P<0.001), and the median MFI of HLA Ⅰ+Ⅱ antibodies decreased from 5 476 (1 977-12 382) to 3 714 (0-11 074) ( P=0.035). The median MFI of patients with positive anti-donor-specific antibodies decreased from 8 779 (2 697-18 659) to 4 524 (0–15 989) ( P<0.001). The number of HLA-A, B, C, DR, and DQ antibodies in all patients decreased after the PAIA treatment, and the differences were statistically significant (A, B, C, DR: P<0.001, DQ: P<0.01). The humoral immune monitoring before and after the PAIA treatment showed a significant decrease in the number of IgG and complement C3 ( P<0.001 and P=0.002, respectively). Forty-four patients underwent HLA antibody monitoring after transplantation, and the overall MFI and number of antibody types decreased. However, five patients developed new antibodies with low MFI, and nine patients continued to have high MFI. The overall survival, disease-free survival, non-recurrent mortality, and cumulative recurrence rates at 100 days post-transplantation were 83.8%, 80.2%, 16.1%, and 4.5%, respectively. Conclusions:The combination of PAIA and RTX has a certain therapeutic effect and good safety in the desensitization treatment of highly sensitive patients before haplo-HSCT.

Result Analysis
Print
Save
E-mail