1.Study on the effect of apoptosis stimulation protein 2 on traumatic proliferative vitreoretinopathy in rabbits
Xiaoli CHEN ; Yuze MAO ; Wenhui CAI ; Haiwei WANG ; Yankun YUE
International Eye Science 2026;26(1):16-20
AIM:To investigate the effect of apoptosis stimulation protein 2(ASPP2)on the development of traumatic proliferative vitreoretinopathy(PVR)in a rabbit model.METHODS:A total of 30 New Zealand white rabbits were selected, and the right eyes of all rabbits were inflicted with a scleral penetrating wound of approximately 6 mm. Then rabbits were randomly and evenly divided into experimental and control group. The experimental group received an intravitreal injection of 0.1 mL of ARPE-19 cell suspension transfected with lentivirus-ASPP2, while the control group received an intravitreal injection of 0.1 mL of ARPE-19 cell suspension transfected with negative control lentivirus. At 1, 2, 3, and 4 wk after PVR modeling, a handheld tonometer was used to measure the intraocular pressure. Moreover, fundus photography and ocular ultrasound examination were performed to detect the retinal proliferation. At 4 wk after modeling, hematoxylin-eosin staining was used to observe the morphological retinal changes, and Western blot was used to determine the protein expressions of ASPP2 and the epithelial-mesenchymal transition(EMT)marker Vimentin in the rabbit retinas.RESULTS:At 1, 2, 3, and 4 wk after modeling, there were no significant changes in intraocular pressure within the experimental and control group of rabbit eyes, either before or after PVR modeling, the success rate of PVR modeling in the experimental group was lower than that in the control group(P<0.05), and the retinal proliferation and structural disorder was less severe in the experimental group. At 4 wk after modeling, the retinal protein expression level of ASPP2 in the experimental group was significantly higher than that in the control group(t=3.193, P=0.033), while the Vimentin protein expression level was significantly lower in the experimental group(t=-3.599, P=0.023).CONCLUSION:ASPP2 may be involved in regulating the process of EMT in retinal pigment epithelial cells, thereby delaying the development and progression of traumatic PVR in rabbit eyes.
2.Validation of a predictive model for platelet transfusion refractoriness in patients with hematological diseases
Xiulan HUANG ; Shuhan YUE ; Qun CAI ; Liqi LU ; Mengzhen HE ; Qiao LEI ; Caoyi LIU ; Jingwei ZHANG
Chinese Journal of Blood Transfusion 2025;38(4):537-545
[Objective] To validate and optimize the platelet transfusion refractoriness (PTR) prediction model for patients with hematological disorders established by our center. [Methods] The data of patients with hematological diseases who received platelet transfusions from December 2021 to December 2022 were used as the training set, and data from January 2023 to December 2023 as the validation set. The validation set data was used to validate the predictive model constructed on the training set. Relevant risk factors for PTR were collected through literature review and preliminary studies。 The patients were divided into effective and ineffective groups according to the corrected count increment (CCI) of platelet counts. Predictive factors were screened using univariate and multivariate logistic regression. The calibration of the model were assessed via calibration curves, while discrimination, accuracy, sensitivity, and specificity were evaluated using receiver operating characteristic (ROC) curves Clinical utility was further analyzed with decision curve analysis (DCA). [Results] The Hosmer-Lemeshow (H-L) goodness-of-fit test for the validation set yielded S: P=0.000, indicating that the original model needs optimization. Baseline comparisons and logistic regression identified the number of red blood cell units (RBCU) and platelet units (PLT-U) transfused as key predictors for the optimized model. The H-L goodness-of-fit test S: P values for the training and validation sets were 0.930 and 0.056, respectively; the ROC areas were 0.793 5 and 0.809 4, specificities 90.95% and 84.21%, sensitivities 59.26% and 70.04%, and accuracies 78.14% and 74.10%, respectively. DCA demonstrated clinical net benefit within a prediction probability threshold range of 0.2-0.8. [Conclusion] Transfusion volumes of RBC-U and PLT-U were inversely associated with PTR in hematological patients. The resulting PTR prediction model exhibits moderate predictive efficacy and clinical benefit.
3.Percutaneous coronary intervention vs . medical therapy in patients on dialysis with coronary artery disease in China.
Enmin XIE ; Yaxin WU ; Zixiang YE ; Yong HE ; Hesong ZENG ; Jianfang LUO ; Mulei CHEN ; Wenyue PANG ; Yanmin XU ; Chuanyu GAO ; Xiaogang GUO ; Lin CAI ; Qingwei JI ; Yining YANG ; Di WU ; Yiqiang YUAN ; Jing WAN ; Yuliang MA ; Jun ZHANG ; Zhimin DU ; Qing YANG ; Jinsong CHENG ; Chunhua DING ; Xiang MA ; Chunlin YIN ; Zeyuan FAN ; Qiang TANG ; Yue LI ; Lihua SUN ; Chengzhi LU ; Jufang CHI ; Zhuhua YAO ; Yanxiang GAO ; Changan YU ; Jingyi REN ; Jingang ZHENG
Chinese Medical Journal 2025;138(3):301-310
BACKGROUND:
The available evidence regarding the benefits of percutaneous coronary intervention (PCI) on patients receiving dialysis with coronary artery disease (CAD) is limited and inconsistent. This study aimed to evaluate the association between PCI and clinical outcomes as compared with medical therapy alone in patients undergoing dialysis with CAD in China.
METHODS:
This multicenter, retrospective study was conducted in 30 tertiary medical centers across 12 provinces in China from January 2015 to June 2021 to include patients on dialysis with CAD. The primary outcome was major adverse cardiovascular events (MACE), defined as a composite of cardiovascular death, non-fatal myocardial infarction, and non-fatal stroke. Secondary outcomes included all-cause death, the individual components of MACE, and Bleeding Academic Research Consortium criteria types 2, 3, or 5 bleeding. Multivariable Cox proportional hazard models were used to assess the association between PCI and outcomes. Inverse probability of treatment weighting (IPTW) and propensity score matching (PSM) were performed to account for potential between-group differences.
RESULTS:
Of the 1146 patients on dialysis with significant CAD, 821 (71.6%) underwent PCI. After a median follow-up of 23.0 months, PCI was associated with a 43.0% significantly lower risk for MACE (33.9% [ n = 278] vs . 43.7% [ n = 142]; adjusted hazards ratio 0.57, 95% confidence interval 0.45-0.71), along with a slightly increased risk for bleeding outcomes that did not reach statistical significance (11.1% vs . 8.3%; adjusted hazards ratio 1.31, 95% confidence interval, 0.82-2.11). Furthermore, PCI was associated with a significant reduction in all-cause and cardiovascular mortalities. Subgroup analysis did not modify the association of PCI with patient outcomes. These primary findings were consistent across IPTW, PSM, and competing risk analyses.
CONCLUSION
This study indicated that PCI in patients on dialysis with CAD was significantly associated with lower MACE and mortality when comparing with those with medical therapy alone, albeit with a slightly increased risk for bleeding events that did not reach statistical significance.
Humans
;
Percutaneous Coronary Intervention/methods*
;
Male
;
Female
;
Coronary Artery Disease/drug therapy*
;
Retrospective Studies
;
Renal Dialysis/methods*
;
Middle Aged
;
Aged
;
China
;
Proportional Hazards Models
;
Treatment Outcome
4. Determination of docusate sodium by ion-pair high-performance liquid chromatography
Lirong CAI ; Haiping SHU ; Sha XIAO ; Yue TAN ; Jinfeng ZHENG ; Changliang LI ; Yanming LIU
Journal of China Pharmaceutical University 2025;56(2):183-187
To reduce the dependency on high-carbon-load chromatographic columns,a new method has been established for the determination of the content of docusate sodium using ion-pair high-performance liquid chromatography (IP-HPLC). Tetrapropylammonium chloride was used as the ion-pair reagent with a mobile phase, composition of acetonitrile:10 mmol/L tetrapropylammonium chloride solution = 66∶34, adjusting pH to 6.5 with 0.1% phosphoric acid solution,flow rate of 1.5 mL/min, detection wavelength of 214 nm,column temperature of 35 °C, and an injection volume of 25 μL,and quantified by an external standard method. The main peak of docusate sodium exhibited a tailing factor of 1.34. The method showed good linearity within the range of 0.02 mg/mL to 0.40 mg/mL, with a correlation coefficient (r) of 0.999 9. It also demonstrated good repeatability, with recovery ranging from 97.0% to 98.2% (n=6). The quantification limit was 3.31 μg/mL, and the detection limit was 2.76 μg/mL.In summary,the new method shows good durability, a wide linear range, and high sensitivity, it is suitable for the determination of docusate sodium.
5.Timosaponin BⅡ Combined with Icariin Maintains Osteoclast-osteoblast Coupling by Restoring Yin-Yang Balance
Zaishi ZHU ; Zeling HUANG ; Weiye CAI ; Hua CHEN ; Boen SONG ; Yue LU ; Qing LU ; Xiaofeng SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):48-57
ObjectiveTo explore the effect of timosaponin BⅡ (TBⅡ) combined with icariin (ICA) on osteoclast (OC)-osteoblast (OB) coupling and decipher the mechanism from the cellular level. MethodsThe cell counting kit-8 (CCK-8) was used to assess the effects of different concentrations of TBⅡ and different concentrations of TBⅡ+ICA on the growth of RAW264.7 cells. Soluble receptor activator of nuclear factor-κB ligand (sRANKL) was used to induce the differentiation of RAW264.7 pre-osteoclasts into osteoclasts. The cells were allocated into sRANKL, TBⅡ (1, 5, 10 μmol·L-1), and TBⅡ+ICA groups. Tartrate-resistant acid phosphatase staining was performed to assess the effects of TBⅡ and TBⅡ+ICA on osteoclast differentiation. Real-time quantitative polymerase chain reaction (Real-time PCR) was conducted to examine the effects of TBⅡ+ICA on the expression of key genes involved in osteoclast differentiation and osteoclast-derived coupling factors. The osteogenic differentiation conditioned medium mixed with osteoclast supernatant was used to induce osteogenic differentiation of MC3T3-E1 cells. Alkaline phosphatase staining and alizarin red S staining were employed to determine the effect of TBⅡ+ICA on osteogenic differentiation. Real-time PCR was employed to evaluate the effects of conditioned medium on key genes involved in osteogenic differentiation. ResultsTBⅡ at 1, 5, 10 μmol·L-1 had no significant effect on the cell survival rate. Compared with the sRANKL group, TBⅡ inhibited osteoclast differentiation in a dose-dependent manner and achieved the best effect at 10 μmol·L-1 (P<0.01). Compared with the sRANKL group, different concentrations of TBⅡ down-regulated the mRNA levels of osteoclast differentiation-related genes c-Fos, RANK, and RANKL (P<0.05). None of 10 μmol·L-1 TBⅡ, 10 μmol·L-1 TBⅡ+10-4 μmol·L-1 ICA, or 10 μmol·L-1 TBⅡ+10-3 μmol·L-1 ICA affected the viability of RAW264.7 cells. TBⅡ and/or ICA inhibited osteoclast differentiation (P<0.01), and TBⅡ + ICA had the best effect (P<0.01). Compared with the sRANKL group, TBⅡ and/or ICA down-regulated the mRNA levels of c-Fos, RANK, and RANKL (P<0.05). The single application of TBⅡ and ICA had no significant effect on the mRNA levels of Wnt10b, Cthrc1, and C3a, while TBⅡ+ICA exerted up-regulating effects (P<0.05). Compared with those in the blank group, the bone differentiation and mineralization abilities of the normal osteogenic induction group and each osteogenic induction + osteoclast supernatant group were improved (P<0.01). Compared with the blank group, the normal osteogenic induction group and the osteogenic induction + osteoclast supernatant group showed up-regulated mRNA levels of Runx2 and OCN (P<0.01). ConclusionTBⅡ+ICA can inhibit osteoclast differentiation, maintain the normal osteoclast-osteoblast coupling, and promote osteogenic differentiation.
6.Recombinant human LAG3 lentiviral vector and its stable expression in mouse fibroblast cells
China Tropical Medicine 2025;25(3):328-
Objective To construct a recombinant lentiviral expression vector for human lymphocyte activation gene 3 (LAG3) and generation of monoclonal cell lines that preferentially express LAG3 by transfection of the vector into mouse fibroblast cells 3T3. Methods After extracting total RNA extracted from human peripheral blood mononuclear cells, the RNA is reversely transcribed into cDNA. The LAG3 extracellular and transmembrane region sequences are amplified by PCR using high-fidelity DNA polymerase. The PCR products are double-digested with the restriction endonucleases EcoRⅠ and NotⅠ, then ligated with the lentiviral vector pTSB-copGFP to construct the recombinant expression vector pTSB-LAG3-copGFP, which is subsequently transformed into Escherichia coli DH5α. Positive clonal bacteria are selected by PCR, and the plasmids are extracted and sequenced for verification. The recombinant vector pTSB-LAG3-copGFP, along with packaging plasmids psPAX2 and pMD2.0G, are co-transfected into human embryonic kidney 293T cells to assemble and release virus particles, the virus infected 3T3 cells were collected. During the puromycin selection of infected 3T3 cells, the limited dilution method is used to obtain 3T3 monoclonal cells that stably express LAG3. Real-time fluorescent quantitative PCR, immunofluorescence and flow cytometry were utilized to verify the transcription of LAG3 mRNA and the expression of LAG3 protein respectively. Results Sequencing of the recombinant pTSB-LAG3-copGFP lentiviral vector plasmid reveals that the amplified LAG3 sequence contains a synonymous mutation in the His codon at nucleotide position 1 697 bp within the LAG3 transmembrane region, which aligns with the standard LAG3 sequence (accession number NM_002286.6) in GenBank. The 3T3 cells infected by pTSB-LAG3-copGFP packaging virus screened with puromycin. A total of 20 LAG3+copGFP+-3T3 monoclonal cell lines were obtained, all of which exhibited transcription of LAG3 mRNA. The monoclonal cell line MC-6 exhibits the highest transcriptional level of LAG3. Effective expression and distribution of LAG3 protein on the cell membrane and cytoplasmic organelle membranes in MC-6 indicated by immunofluorescence and flow cytometry. Conclusion The pTSB-LAG3-copGFP lentiviral vector was successfully constructed. LAG3+copGFP+-3T3 monoclonal cell lines overexpressing lymphocyte activating 3 were efficiently established, laying the foundation for subsequent studies on the relationship between LAG3 and the development of chronic infectious diseases such as hepatitis B, as well as the interventional treatment of LAG3.
7.Diagnosis and treatment of colorectal liver metastases: Chinese expert consensus-based multidisciplinary team (2024 edition).
Wen ZHANG ; Xinyu BI ; Yongkun SUN ; Yuan TANG ; Haizhen LU ; Jun JIANG ; Haitao ZHOU ; Yue HAN ; Min YANG ; Xiao CHEN ; Zhen HUANG ; Weihua LI ; Zhiyu LI ; Yufei LU ; Kun WANG ; Xiaobo YANG ; Jianguo ZHOU ; Wenyu ZHANG ; Muxing LI ; Yefan ZHANG ; Jianjun ZHAO ; Aiping ZHOU ; Jianqiang CAI
Chinese Medical Journal 2025;138(15):1765-1768
8.Steroid sulfatase inhibitor DU-14 prevents amyloid β-protein-induced depressive-like behavior and theta rhythm suppression in rats.
Xing-Hua YUE ; Zhao-Jun WANG ; Mei-Na WU ; Hong-Yan CAI ; Jun ZHANG
Acta Physiologica Sinica 2025;77(5):801-810
The hippocampus, a major component of the limbic system, is the most important region related to emotion regulation and memory processing. Cognitive impairment and depressive symptoms observed in Alzheimer's disease (AD) patients may be attributed to hippocampal damage caused by amyloid β-protein (Aβ). Our previous studies have demonstrated that a steroid sulfatase inhibitor DU-14 can enhance hippocampal synaptic plasticity and spatial memory abilities in a chronic AD murine model by counteracting the toxic effects of Aβ. However, limited experimental evidence exists regarding the efficacy of steroid sulfatase inhibitor on depressive symptoms in AD animal models. In this study, we investigated the effects of DU-14 on depressive symptoms and theta-band neuronal oscillations in rats with intrahippocampal injection of Aβ1-42 using various behavioral tests such as sucrose preference test, tail suspension test, forced swimming test, and in vivo hippocampal local field potential (LFP) recording. The results demonstrated that, in comparison to the control group: (1) rats in the Aβ group exhibited a decrease in sucrose preference, indicating a loss of interest in pleasurable activities; (2) rats in the Aβ group displayed aggravated depressive-like behavior characterized by prolonged immobility time during tail suspension and forced swimming tests; (3) Aβ disrupted the induction of theta rhythm via tail pinch stimulation, and resulted in a significant reduction in peak power of theta rhythm. In contrast to the Aβ group, pretreatment with DU-14 resulted in: (1) a significant improvement in Aβ-induced anhedonia, as evidenced by increased sucrose preference; (2) significant alleviation of Aβ-induced despair and depressive-like behaviors, reflected by reduced immobility time during tail suspension and forced swimming tests; (3) successful mitigation of Aβ-mediated inhibition on bilateral hippocampal theta rhythm. These findings indicate that steroid sulfatase inhibitor DU-14 can counteract neurotoxicity induced by Aβ, and prevent Aβ-induced depressive-like behavior and suppression of theta rhythm.
Animals
;
Amyloid beta-Peptides/toxicity*
;
Rats
;
Depression/physiopathology*
;
Theta Rhythm/drug effects*
;
Hippocampus/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Alzheimer Disease/physiopathology*
;
Steryl-Sulfatase/antagonists & inhibitors*
;
Peptide Fragments
;
Behavior, Animal/drug effects*
9.Construction of oleanolic acid-producing Saccharomyces cerevisiae cells.
Yue ZHANG ; Xue-Mi HAO ; Cai-Xia WANG ; Long-Shan ZHAO
China Journal of Chinese Materia Medica 2025;50(9):2365-2372
In this study, Saccharomyces cerevisiae R0 was used as the chassis cell to synthesize oleanolic acid from scratch through the heterologous expression of β-amyrin synthase(β-AS) from Glycyrrhiza uralensis, cytochrome P450 enzyme CYP716A154 from Catharanthus roseus, and cytochrome P450 reductase AtCPR from Arabidopsis thaliana. The engineered strain R1 achieved shake flask titres of 5.19 mg·L~(-1). By overexpressing enzymes in the pentose phosphate pathway(PPP)(ZWF1, GND1, TKL1, and TAL), the NADH kinase gene in the mitochondrial matrix(POS5), truncated 3-hydroxy-3-methylglutaryl-CoA reductase(tPgHMGR1) from Panax ginseng, and farnesyl diphosphate synthase gene(SmFPS) from Salvia miltiorrhiza, the precursor supply and intracellular reduced nicotinamide adenine dinucleotide phosphate(NADPH) supply were enhanced, resulting in an 11.4-fold increase in squalene yield and a 3.6-fold increase in oleanolic acid yield. Subsequently, increasing the copy number of the heterologous genes tPgHMGR1, β-AS, CYP716A154, and AtCPR promoted the metabolic flow towards the final product, oleanolic acid, and increased the yield by three times. Shake flask fermentation data showed that, by increasing the copy number, precursor supply, and intracellular NADPH supply, the final engineered strain R3 could achieve an oleanolic acid yield of 53.96 mg·L~(-1), which was 10 times higher than that of the control strain R1. This study not only laid the foundation for the green biosynthesis of oleanolic acid but also provided a reference for metabolic engineering research on other pentacyclic triterpenoids in S. cerevisiae.
Oleanolic Acid/biosynthesis*
;
Saccharomyces cerevisiae/metabolism*
;
Industrial Microbiology
;
Microorganisms, Genetically-Modified/metabolism*
;
Plants/enzymology*
;
Fermentation
;
Metabolic Engineering
10.Fucoidan sulfate regulates Hmox1-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy.
Yu-Feng CAI ; Wei HU ; Yi-Gang WAN ; Yue TU ; Si-Yi LIU ; Wen-Jie LIU ; Liu-Yun-Xin PAN ; Ke-Jia WU
China Journal of Chinese Materia Medica 2025;50(9):2461-2471
This study explores the role and underlying molecular mechanisms of fucoidan sulfate(FPS) in regulating heme oxygenase-1(Hmox1)-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy(DCM) through in vivo and in vitro experiments and network pharmacology analysis. In vivo, a DCM rat model was established using a combination of "high-fat diet feeding + two low-dose streptozotocin(STZ) intraperitoneal injections". The rats were randomly divided into four groups: normal, model, FPS, and dapagliflozin(Dapa) groups. In vitro, a cellular model was created by inducing rat cardiomyocytes(H9c2 cells) with high glucose(HG), using zinc protoporphyrin(ZnPP), an Hmox1 inhibitor, as the positive control. An automatic biochemical analyzer was used to measure blood glucose(BG), serum aspartate aminotransferase(AST), serum lactate dehydrogenase(LDH), and serum creatine kinase-MB(CK-MB) levels. Echocardiography was used to assess rat cardiac function, including ejection fraction(EF) and fractional shortening(FS). Pathological staining was performed to observe myocardial morphology and fibrotic characteristics. DCFH-DA fluorescence probe was used to detect reactive oxygen species(ROS) levels in myocardial tissue. Specific assay kits were used to measure serum brain natriuretic peptide(BNP), myocardial Fe~(2+), and malondialdehyde(MDA) levels. Western blot(WB) was used to detect the expression levels of myosin heavy chain 7B(MYH7B), natriuretic peptide A(NPPA), collagens type Ⅰ(Col-Ⅰ), α-smooth muscle actin(α-SMA), ferritin heavy chain 1(FTH1), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), 4-hydroxy-2-nonenal(4-HNE), and Hmox1. Immunohistochemistry(IHC) was used to examine Hmox1 protein expression patterns. FerroOrange and Highly Sensitive DCFH-DA fluorescence probes were used to detect intracellular Fe~(2+) and ROS levels. Transmission electron microscopy was used to observe changes in mitochondrial morphology. In network pharmacology, FPS targets were identified through the PubChem database and PharmMapper platform. DCM-related targets were integrated from OMIM, GeneCards, and DisGeNET databases, while ferroptosis-related targets were obtained from the FerrDb database. A protein-protein interaction(PPI) network was constructed for the intersection of these targets using STRING 11.0, and core targets were screened with Cytoscape 3.9.0. Molecular docking analysis was conducted using AutoDock and PyMOL 2.5. In vivo results showed that FPS significantly reduced AST, LDH, CK-MB, and BNP levels in DCM model rats, improved cardiac function, decreased the expression of myocardial injury proteins(MYH7B, NPPA, Col-Ⅰ, and α-SMA), alleviated myocardial hypertrophy and fibrosis, and reduced Fe~(2+), ROS, and MDA levels in myocardial tissue. Furthermore, FPS regulated the expression of ferroptosis-related markers(Hmox1, FTH1, SLC7A11, GPX4, and 4-HNE) to varying degrees. Network pharmacology results revealed 313 potential targets for FPS, 1 125 targets for DCM, and 14 common targets among FPS, DCM, and FerrDb. Hmox1 was identified as a key target, with FPS showing high docking activity with Hmox1. In vitro results demonstrated that FPS restored the expression levels of ferroptosis-related proteins, reduced intracellular Fe~(2+) and ROS levels, and alleviated mitochondrial structural damage in cardiomyocytes. In conclusion, FPS improves myocardial injury in DCM, with its underlying mechanism potentially involving the regulation of Hmox1 to inhibit ferroptosis. This study provides pharmacological evidence supporting the therapeutic potential of FPS for DCM-induced myocardial injury.
Animals
;
Ferroptosis/drug effects*
;
Rats
;
Diabetic Cardiomyopathies/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Polysaccharides/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Myocytes, Cardiac/metabolism*
;
Myocardium/pathology*
;
Humans
;
Cell Line
;
Heme Oxygenase (Decyclizing)

Result Analysis
Print
Save
E-mail