1.Challenges and optimization strategies for radiation exposure in pediatric patients during total-body PET/CT examinations
Wenhui LIU ; Yulin GUO ; Yinuo SUN ; Leiying CHAI ; Yudong JING ; Kun LI
Chinese Journal of Radiological Health 2025;34(4):602-606
Total-body PET/CT, with its long axial field of view and high sensitivity detector, has shown potential for reducing the dose of radiopharmaceuticals. However, pediatric patients are significantly more sensitive to radiation and have a higher long-term cancer risk than adults, posing fundamental challenges for dose management in PET/CT examinations for these patients. In this article, the technical characteristics of total-body PET/CT and its radiation exposure status in children were systematically analyzed. The radiation exposure could be controlled by the following optimization strategies: adjusting the CT exposure parameters, optimizing the scanning mode, adding reconstruction algorithm, and reducing the injected dose of radioactive tracer. By addressing both external and internal radiation during the PET/CT scanning process, the overall radiation dose received by pediatric patients can be reduced within a certain range. In addition, this article also discusses the technical differences between “total-body” and “whole-body” concepts, and emphasizes that the future optimization of radiation dose in pediatric PET/CT should be realized by integration of personalized scanning protocols. Through reasonable management of scanning protocols and processes, low-dose and high-quality PET/CT imaging can be achieved in clinical environments, thus maximizing protection of pediatric patient health while minimizing the risks associated with ionizing radiation exposure.
2.Correlation between depressive symptom and traditional Chinese medicine constitution among school aged children and adolescents
Chinese Journal of School Health 2025;46(9):1222-1225
Objective:
To explore the correlation between traditional Chinese medicine (TCM) constitution and depressive symptom among school aged children and adolescents, so as to provide evidences for informing constitution based regulation and prevention of depressive symptom.
Methods:
From June to December 2024, a total of 4 729 students aged 6-14 were recruited by cluster random sampling from 10 primary schools in Baoding (Hebei Province), Heze and Liaocheng (Shandong Province). General information, TCM constitution and depressive symptom were collected. Restricted cubic spline (RCS) models were used to analyze related factors and threshold effects of depressive symptom. Binary Logistic regression was applied to examine the association between depressive symptom and TCM constitution, with subgroup analyses conducted.
Results:
The detection rate of depressive symptom among the included children and adolescents was 25.82%. RCS analyses indicated non linear associations between depressive symptom and age (inflection point at 10 years old), bedtime (inflection point at 22:00), and wake up time (inflection point at 6:30 ) (all P non linearity <0.01). Linear associations were observed with body mass index (BMI) and sleep duration (all P non linearity > 0.05 ). After adjusting for covariates such as age, BMI and sleep status, binary Logistic regression analyses showed that Yin deficient constitution ( OR =1.26, 95% CI =1.09-1.45) and Phlegm-dampness constitution ( OR =1.42, 95% CI =1.11-1.82) were significantly associated with depressive symptom among children and adolescents (all P <0.05).
Conclusions
Depressive symptom among school aged children and adolescents is primarily associated with Yin deficiency and Phlegm dampness constitutions in TCM constitution. Active attention should be paid to susceptible TCM constitution among children and adolescents. Targeted health guidance and interventions should be implemented to improve TCM constitution health status for preventing the occurrence of depressive symptom.
3.Computational pathology in precision oncology: Evolution from task-specific models to foundation models.
Yuhao WANG ; Yunjie GU ; Xueyuan ZHANG ; Baizhi WANG ; Rundong WANG ; Xiaolong LI ; Yudong LIU ; Fengmei QU ; Fei REN ; Rui YAN ; S Kevin ZHOU
Chinese Medical Journal 2025;138(22):2868-2878
With the rapid development of artificial intelligence, computational pathology has been seamlessly integrated into the entire clinical workflow, which encompasses diagnosis, treatment, prognosis, and biomarker discovery. This integration has significantly enhanced clinical accuracy and efficiency while reducing the workload for clinicians. Traditionally, research in this field has depended on the collection and labeling of large datasets for specific tasks, followed by the development of task-specific computational pathology models. However, this approach is labor intensive and does not scale efficiently for open-set identification or rare diseases. Given the diversity of clinical tasks, training individual models from scratch to address the whole spectrum of clinical tasks in the pathology workflow is impractical, which highlights the urgent need to transition from task-specific models to foundation models (FMs). In recent years, pathological FMs have proliferated. These FMs can be classified into three categories, namely, pathology image FMs, pathology image-text FMs, and pathology image-gene FMs, each of which results in distinct functionalities and application scenarios. This review provides an overview of the latest research advancements in pathological FMs, with a particular emphasis on their applications in oncology. The key challenges and opportunities presented by pathological FMs in precision oncology are also explored.
Humans
;
Precision Medicine/methods*
;
Medical Oncology/methods*
;
Artificial Intelligence
;
Neoplasms/pathology*
;
Computational Biology/methods*
4.Neural network for auditory speech enhancement featuring feedback-driven attention and lateral inhibition.
Yudong CAI ; Xue LIU ; Xiang LIAO ; Yi ZHOU
Journal of Biomedical Engineering 2025;42(1):82-89
The processing mechanism of the human brain for speech information is a significant source of inspiration for the study of speech enhancement technology. Attention and lateral inhibition are key mechanisms in auditory information processing that can selectively enhance specific information. Building on this, the study introduces a dual-branch U-Net that integrates lateral inhibition and feedback-driven attention mechanisms. Noisy speech signals input into the first branch of the U-Net led to the selective feedback of time-frequency units with high confidence. The generated activation layer gradients, in conjunction with the lateral inhibition mechanism, were utilized to calculate attention maps. These maps were then concatenated to the second branch of the U-Net, directing the network's focus and achieving selective enhancement of auditory speech signals. The evaluation of the speech enhancement effect was conducted by utilising five metrics, including perceptual evaluation of speech quality. This method was compared horizontally with five other methods: Wiener, SEGAN, PHASEN, Demucs and GRN. The experimental results demonstrated that the proposed method improved speech signal enhancement capabilities in various noise scenarios by 18% to 21% compared to the baseline network across multiple performance metrics. This improvement was particularly notable in low signal-to-noise ratio conditions, where the proposed method exhibited a significant performance advantage over other methods. The speech enhancement technique based on lateral inhibition and feedback-driven attention mechanisms holds significant potential in auditory speech enhancement, making it suitable for clinical practices related to artificial cochleae and hearing aids.
Humans
;
Attention/physiology*
;
Speech Perception/physiology*
;
Neural Networks, Computer
;
Speech
;
Noise
;
Feedback
5.Effectiveness of guide plate with mortise-tenon joint structure combined with off-axis fixation in treatment of Pauwels type Ⅲ femoral neck fractures.
Xuanye ZHU ; Lijuan CUI ; Leilei ZHANG ; Yudong JIA ; Yingjie ZHU ; Youwen LIU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(3):284-289
OBJECTIVE:
To investigate the effectiveness of using 3 hollow compression screws combined with 1 screw off-axis fixation under the guidance of three-dimensional (3D) printed guide plate with mortise-tenon joint structure (mortise-tenon joint plate) for the treatment of Pauwels type Ⅲ femoral neck fractures.
METHODS:
A clinical data of 78 patients with Pauwels type Ⅲ femoral neck fractures, who were admitted between August 2022 and August 2023 and met the selection criteria, was retrospectively analyzed. The operations were assisted with mortise-tenon joint plates in 26 cases (mortise-tenon joint plate group) and traditional guide plates in 28 cases (traditional plate group), and without guide plates in 24 cases (control group). There was no significant difference in the baseline data of gender, age, body mass index, cause of injury, and fracture side between groups ( P>0.05). The operation time, intraoperative blood loss, frequency of intraoperative fluoroscopy, incision length, incidence of postoperative deep vein thrombosis of lower extremity, pain visual analogue scale (VAS) score at 1 week after operation, and Harris score of hip joint at 3 months after operation were recorded and compared. X-ray re-examination was taken to check the quality of fracture reduction, fracture healing, and the shortening length of the femoral neck at 3 months after operation, and the incidences of internal fixation failure and osteonecrosis of the femoral head during operation.
RESULTS:
Compared with the control group, the operation time, intraoperative blood loss, and frequency of intraoperative fluoroscopy reduced in the two plate groups, and the quality of fracture reduction was better, but the incision was longer, and the differences were significant ( P<0.05). The operation time and intraoperative blood loss were significantly higher in the traditional plate group than in the mortise-tenon joint plate group ( P<0.05), the incision was significantly longer ( P<0.05); and the difference in fracture reduction quality and the frequency of intraoperative fluoroscopy was not significant between two plate groups ( P>0.05). There was 1 case of deep vein thrombosis of lower extremity in the traditional plate group and 1 case in the control group, while there was no thrombosis in the mortise-tenon joint plate group. There was no significant difference in the incidence between groups ( P>0.05). All patients were followed up 12-15 months (mean, 13 months). There was no significant difference in VAS score at 1 week and Harris score at 3 months between groups ( P>0.05). Compared with the control group, the fracture healing time and the length of femoral neck shortening at 3 months after operation were significantly shorter in the two plate groups ( P<0.05). There was no significant difference between the two plate groups ( P>0.05). There was no significant difference in the incidences of non-union fractures, osteonecrosis of the femoral head, or internal fixation failure between groups ( P>0.05).
CONCLUSION
For Pauwels type Ⅲ femoral neck fractures, the use of 3D printed guide plate assisted reduction and fixation can shorten the fracture healing time, reduce the incidence of postoperative complications, and be more conducive to the early functional exercise of the affected limb. Compared with the traditional guide plate, the mortise-tenon joint plate can reduce the intraoperative bleeding and shorten the operation time.
Humans
;
Femoral Neck Fractures/diagnostic imaging*
;
Bone Plates
;
Fracture Fixation, Internal/instrumentation*
;
Male
;
Female
;
Retrospective Studies
;
Middle Aged
;
Bone Screws
;
Adult
;
Aged
;
Treatment Outcome
;
Printing, Three-Dimensional
;
Operative Time
6.Microbiome, metabolome, and transcriptome analyses in esophageal squamous cell carcinoma: insights into immune modulation by F. nucleatum.
Xue ZHANG ; Jing HAN ; Yudong WANG ; Li FENG ; Zhisong FAN ; Yu SU ; Wenya SONG ; Lan WANG ; Long WANG ; Hui JIN ; Jiayin LIU ; Dan LI ; Guiying LI ; Yan LIU ; Jing ZUO ; Zhiyu NI
Protein & Cell 2025;16(6):491-496
7.Adaptive multi-view learning method for enhanced drug repurposing using chemical-induced transcriptional profiles, knowledge graphs, and large language models.
Yudong YAN ; Yinqi YANG ; Zhuohao TONG ; Yu WANG ; Fan YANG ; Zupeng PAN ; Chuan LIU ; Mingze BAI ; Yongfang XIE ; Yuefei LI ; Kunxian SHU ; Yinghong LI
Journal of Pharmaceutical Analysis 2025;15(6):101275-101275
Drug repurposing offers a promising alternative to traditional drug development and significantly reduces costs and timelines by identifying new therapeutic uses for existing drugs. However, the current approaches often rely on limited data sources and simplistic hypotheses, which restrict their ability to capture the multi-faceted nature of biological systems. This study introduces adaptive multi-view learning (AMVL), a novel methodology that integrates chemical-induced transcriptional profiles (CTPs), knowledge graph (KG) embeddings, and large language model (LLM) representations, to enhance drug repurposing predictions. AMVL incorporates an innovative similarity matrix expansion strategy and leverages multi-view learning (MVL), matrix factorization, and ensemble optimization techniques to integrate heterogeneous multi-source data. Comprehensive evaluations on benchmark datasets (Fdataset, Cdataset, and Ydataset) and the large-scale iDrug dataset demonstrate that AMVL outperforms state-of-the-art (SOTA) methods, achieving superior accuracy in predicting drug-disease associations across multiple metrics. Literature-based validation further confirmed the model's predictive capabilities, with seven out of the top ten predictions corroborated by post-2011 evidence. To promote transparency and reproducibility, all data and codes used in this study were open-sourced, providing resources for processing CTPs, KG, and LLM-based similarity calculations, along with the complete AMVL algorithm and benchmarking procedures. By unifying diverse data modalities, AMVL offers a robust and scalable solution for accelerating drug discovery, fostering advancements in translational medicine and integrating multi-omics data. We aim to inspire further innovations in multi-source data integration and support the development of more precise and efficient strategies for advancing drug discovery and translational medicine.
8.Design and Fabrication of Porous Implants Manufactured by 3D Printing
Yan WU ; Yudong WANG ; Mengxing LIU ; Dufang SHI ; Nan HU ; Wei FENG
Chinese Journal of Medical Instrumentation 2024;48(1):15-19
Different porous structures were studied through finite element analysis and then optimal porous structure was selected for the orthopedic applications.The optimal Voronoi structure was designed and fabricated using 3D printing.The mechanical properties and osseointegration ability were both investigated.The mechanical tests showed that the tensile strength,compressive strength and bending strength of Voronoi structures were obviously higher than that of the human bone,and the modulus of Voronoi structures were similar to human bone.In addition,the animal experimental results exhibited that obvious bone ingrowth was found from Month 1 to Month 6.This study provides some theoretical references for the orthopedic application of porous structures.
9.Problems and countermeasures of industry-university-research cooperation in Liaoning Province
Yudong WU ; Ji WU ; Wei WU ; Xin LI ; Yu YI ; Yanming LIU ; Shuyin LI ; Yuting KANG ; Wenrui LU ; Weiyun CHEN ; Fu REN ; Kebin XU
Journal of Shenyang Medical College 2024;26(5):542-546
Industry-university-research cooperation is not only the core of technological innovation,but also an important way to enhance industrial competitiveness and achieve high-quality development.Industry-university-research cooperation in Liaoning Province has achieved significant results in promoting technological innovation and economic development,but there are still some problems and challenges.The main problems include insufficient depth of industry-university-research cooperation,scattered innovation resources,lack of long-term stable cooperation mechanisms,as well as talent loss and lack of high-quality innovative talents.Through systematically sorting out the existing models of industry-university-research cooperation,it proposes a series of targeted and operable countermeasures and suggestions.These measures and suggestions provide solid theoretical support for the healthy development of industry-university-research cooperation in Liaoning Province.
10.Research on legal regulations of deep integration of industry-university-research in Liaoning
Yudong WU ; Ji WU ; Wei WU ; Xin LI ; Yu YI ; Yanming LIU ; Shuyin LI ; Kebin XU ; Wenrui LU ; Fu REN ; Yuting KANG
Journal of Shenyang Medical College 2024;26(6):644-649
Objective:To study the situation of legal regulations for the integration of industry-university-research in Liaoning,improve the concept of legal regulation,optimize the legal regulation methods,so as to promote the deep integration of industry-university-research in Liaoning.Method:Problem-oriented approach was used,and the problems of the current legal regulations for the integration of industry-university-research in Liaoning were reviewed.Result:It was found that legal regulations for the deep integration of industry-university-research in Liaoning were not yet perfect,which was manifested in insufficient coverage of policies and regulations,relatively lagging update of regulations,and insufficient highlighting of local characteristics.Conclusion:In response to the above issues,it is proposed to use measures such as collaborative regulation,incentive regulation and moderate regulation to establish and improve the legal system of the integration of industry-university-research in Liaoning province.


Result Analysis
Print
Save
E-mail