1.Effect of electroacupuncture on learning and memory abilities in vascular dementia rats via the NCOA4/FTH1 signaling pathway-mediated ferritinophagy.
Wei SUN ; Yinghua CHEN ; Tong WU ; Hongxu ZHAO ; Haoyu WANG ; Ruiqi QIN ; Xiaoqing SU ; Junfeng LI ; Yuanyu SONG ; Yue MIAO ; Xinran LI ; Yusheng HAN
Chinese Acupuncture & Moxibustion 2025;45(9):1271-1280
OBJECTIVE:
To observe the effect of electroacupuncture at "Sishencong" (EX-HN1) and "Fengchi" (GB20) on hippocampal neuronal ferritinophagy mediated by the nuclear receptor coactivator 4 (NCOA4)/ferritin heavy chain 1 (FTH1) signaling pathway in vascular dementia (VD) rats, and to explore the potential mechanisms of electroacupuncture for VD.
METHODS:
A total of 60 male rats of SPF grade were randomly divided into a blank group (12 rats), a sham surgery group (12 rats) and a modeling group (36 rats). In the modeling group, the modified 4-vessel occlusion method was used to establish the VD model. The 24 successfully modeled rats were randomly divided into a model group and an electroacupuncture group, with 12 rats in each group. In the electroacupuncture group, electroacupuncture was applied at left and right "Sishencong" (EX-HN1), and bilateral "Fengchi" (GB20), with continuous wave, in frequency of 2 Hz and current intensity of 1 mA, 30 min a time, once daily for 21 consecutive days. The learning and memory abilities were assessed using the Morris water maze test before modeling, after modeling and after intervention, as well as the novel object recognition test after intervention. After intervention, the neuronal morphology in the hippocampus was observed by Nissl staining; the iron deposition was observed by Prussian blue staining; the reactive oxygen species (ROS) level was detected by dihydroethidium (DHE) fluorescence staining; the levels of iron, malondialdehyde (MDA) and superoxide dismutase (SOD) in the hippocampal tissue were measured by the colorimetric assay, TBA method, and WST-1 method, respectively; the positive expression of NCOA4, FTH1 and glutathione peroxidase 4 (GPX4) was detected by immunohistochemistry; the protein expression of NCOA4, FTH1, GPX4, and the ratio of microtubule-associated protein 1 light chain 3B (LC3B) Ⅱ/Ⅰ in the hippocampus were detected by Western blot.
RESULTS:
Compared with the sham surgery group, in the model group, the escape latency was prolonged, and the number of platform crossings reduced (P<0.01), the recognition index (RI) was decreased (P<0.01); the hippocampal neurons displayed a blurred laminar structure, disorganized cellular arrangement, and the number of Nissl bodies was decreased (P<0.01); the percentage of iron deposition area in the hippocampus was increased (P<0.01); in the hippocampus, the levels of ROS, iron, MDA, and the protein expression of NCOA4, as well as the LC3B Ⅱ/Ⅰ ratio were increased (P<0.01), the SOD level, and the protein expression of FTH1 and GPX4 were decreased (P<0.01). Compared with the model group, in the electroacupuncture group, the escape latency was shortened and the number of platform crossings was increased (P<0.01), the RI was increased (P<0.01); the hippocampal neurons exhibited more regular morphology, better-organized cellular structure, and the number of Nissl bodies was increased (P<0.05); the percentage of iron deposition area in the hippocampus reduced (P<0.01); in the hippocampus, the levels of ROS, iron, MDA, and the protein expression of NCOA4, as well as the LC3B Ⅱ/Ⅰ ratio were decreased (P<0.01, P<0.05), the SOD level, and the protein expression of FTH1 and GPX4 were increased (P<0.01).
CONCLUSION
Electroacupuncture at "Sishencong" (EX-HN1) and "Fengchi" (GB20) can improve learning and memory abilities in VD rats, and its mechanism may be associated with the regulation of the hippocampal NCOA4/FTH1 signaling pathway, inhibition of ferritinophagy, and alleviation of oxidative stress damage.
Animals
;
Electroacupuncture
;
Dementia, Vascular/genetics*
;
Male
;
Rats
;
Signal Transduction
;
Humans
;
Memory
;
Rats, Sprague-Dawley
;
Nuclear Receptor Coactivators/genetics*
;
Ferritins/genetics*
;
Learning
;
Hippocampus/metabolism*
;
Acupuncture Points
2.Exploration of electroacupuncture at "Fengchi" (GB 20) and "Sishencong" (EX-HN 1) for attenuating learning and memory impairment in vascular dementia rats based on NMDAR/CREB/BDNF signaling pathway.
Yuanyu SONG ; Yinghua CHEN ; Wei SUN ; Changqing LI ; Junfeng LI ; Haoyu WANG ; Ruiqi QIN ; Xiaoqing SU ; Tong WU ; Hongxu ZHAO ; Yusheng HAN
Chinese Acupuncture & Moxibustion 2024;44(12):1409-1417
OBJECTIVE:
To explore the mechanism of electroacupuncture (EA) at "Fengchi" (GB 20) and "Sishencong" (EX-HN 1) on learning and memory impairment in vascular dementia (VD) rats by observing the influences on the N-methyl-D-aspartate receptor (NMDAR)/cyclic adenosine monophosphate response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway and the excitotoxicity induced by hippocampal calcium overload.
METHODS:
Thirty-two male SD rats of SPF grade were selected and randomized into a normal group (6 rats), a sham-operation group (6 rats) and an operation group (20 rats). VD model was established with the modified Pulsinelli's four-vessel occlusion (4-VO) method. Twelve rats after successfully modeled were assigned randomly into a model group and an EA group, 6 rats in each one. In the EA group, EA was delivered at bilateral "Fengchi" (GB 20) and "Sishencong" (EX-HN 1), with the continuous wave, the frequency of 2 Hz and the electric current of 1 mA. Stimulation intensity was adjusted depending on the slightly trembling of rat head. EA was given once daily, 30 min each time; and EA intervention was delivered for 21 days continuously. Using Morris water maze test, the learning and memory function was assessed. The neuronal morphology in the hippocampal CA1 was observed with HE staining; the level of glutamate (GLU) in serum and hippocampal tissue, as well as the activity of calcium pump (Ca2+-ATP) in the hippocampus were detected using colorimetric method. The protein expression of NMDAR, calmodulin-dependent protein kinase Ⅱ (CaMKⅡ), phosphorylated calmodulin-dependent protein kinase Ⅱ (p-CaMKⅡ), phosphorylated cyclic phosphoradenosine effector element binding proteins (p-CREB), CREB, and BDNF in the hippocampal CA1 was detected using immunohistochemistry. The protein expression of NMDAR, CREB, p-CREB and BDNF in the hippocampal tissue was detected using Western blot method.
RESULTS:
Compared to the sham-operation group, in the model group, the escape latency was prolonged and the platform crossing times of rats were reduced (P<0.01), the hippocampal neuron structure was damaged to different degrees, the structure in hippocampal CA1 was loosened, the arrangement disorganized, with clear grid-like structure; the neuronal morphology was irregular, pyknosis and even dissolution occurred, glial cells increased, blood capillary was dilated and the inflammatory cells were infiltrated and scattered. The level of GLU in the serum and hippocampal tissue and the protein expression of hippocampal NMDAR were elevated (P<0.01), the activity of Ca2+-ATP and the protein expression of CaMKⅡ, p-CaMKⅡ, CREB, p-CREB and BDNF were reduced (P<0.01, P<0.05); and the ratio of p-CaMKⅡ/CaMKⅡ and that of p-CREB/CREB were dropped (P<0.05). In comparison with the model group, in the EA group, the escape latency was shortened and the platform crossing times of rats rose (P<0.01), the arrangement was improved in the hippocampal CA1, the neuronal morphology was intact, the nucleoli were clear relatively and the pyknosis or dissolution were attenuated, the numbers of glial cells reduced relatively, the dilation of blood capillary was alleviated. The level of GLU in the serum and hippocampal tissue and the protein expression of NMDAR were reduced in the hippocampal tissue (P<0.01), the activity of Ca2+-ATP and the protein expression of CaMKⅡ, p-CaMKⅡ, CREB, p-CREB and BDNF were elevated (P<0.05, P<0.01); and the ratio of p-CaMKⅡ/CaMKⅡ and that of p-CREB/CREB increased (P<0.05).
CONCLUSION
EA at "Fengchi" (GB 20) and "Sishencong" (EX-HN 1) can attenuate learning and memory impairment in VD rats, which may be obtained by reducing GLU level in hippocampal tissue, inhibiting hippocampal excitotoxicity, mediating protein expression related to the NMDAR/CREB/BDNF signaling pathway, and maintaining neuronal survival and growth.
Electroacupuncture
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
Learning
;
Memory
;
Signal Transduction
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Memory Disorders/therapy*
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Dementia, Vascular/therapy*
3.Effects of the ITPR1 gene overexpression on Ca²⁺ concentration, lipid content and calcium transport-related genes in duck uterine epithelial cells.
Minfang YOU ; Yuanyu QIN ; Yiyu ZHANG ; Chaomei LIAO ; Guanghui TAN ; Jiezhang LI ; Wangui LI
Chinese Journal of Biotechnology 2021;37(7):2443-2452
Inositol 1,4,5-trisphosphate receptor 1 (ITPR1) is an important intracellular channel for releasing Ca²⁺. In order to investigate the effects of the ITPR1 overexpression on Ca²⁺ concentration and lipid content in duck uterine epithelial cells and its effects on calcium transport-related genes, the structural domain of ITPR1 gene of duck was cloned into an eukaryotic expression vector and transfected into duck uterine epithelial cells. The overexpression of the ITPR1 gene, the concentration of Ca²⁺, the lipid content, and the expression of other 6 calcium transport-related genes was determined. The results showed that the concentration of Ca²⁺ in uterine epithelial cells was significantly reduced after transfection (P<0.05), the triglyceride content was significantly increased (P<0.01), and the high-density lipoprotein content was significantly decreased (P<0.01). The correlation analysis results showed that the overexpression of the C-terminal half of the ITPR1 gene was significantly positively correlated with the total cholesterol content (P<0.01), which was significantly positively correlated with the low-density lipoprotein content (P<0.05). The overexpression of the N-terminal half of the ITPR1 gene was significantly positively correlated with the triglyceride content (P<0.01), which was significantly negatively correlated with the concentration of Ca²⁺ (P<0.05). RT-qPCR results of 6 calcium transport-related genes showed that the overexpression of the C-terminal half of the ITPR1 gene significantly inhibited the expression of the IP3R2, VDAC2 and CAV1 genes, and the overexpression of the N-terminal half of the ITPR1 gene significantly promoted the expression of the IP3R3 and CACNA2D1 genes. In conclusion, the ITPR1 gene overexpression can promote Ca²⁺ release in duck uterus epithelial cells, promote the synthesis of triglyceride, low-density lipoprotein and cholesterol, and inhibit the production of high-density lipoprotein, and the ITPR1 gene overexpression affected the expression of all 6 calcium transport-related genes.
Animals
;
Calcium/metabolism*
;
Ducks/genetics*
;
Epithelial Cells
;
Female
;
Inositol
;
Inositol 1,4,5-Trisphosphate Receptors
;
Lipids
;
Uterus
4.Effects of SCD-1 gene overexpression on the content of calcium ion and lipids in duck uterine epithelial cells.
Jiezhang LI ; Hualun LUO ; Guanghui TAN ; Lei WU ; Yuanyu QIN ; Yiyu ZHANG
Chinese Journal of Biotechnology 2020;36(5):899-907
Stearoyl-CoAdesaturase-1 (SCD-1) is a key regulator of monounsaturated fatty acid synthesis. It plays a vital role in lipid synthesis and metabolism. Ca²⁺ is an important cation in the body and plays an important role in the organism. The aims of this study were to investigate the correlation of SCD-1 gene overexpression with lipid indexes and calcium ion level. The pcDNA3.1 (+) + SCD-1 +Flag eukaryotic expression vector and cultured duck uterine epithelial cells were co-transfected. The overexpression of SCD-1 gene was measured using the Flag Label Detection Kit. Ca ions and lipid contents were detected through Fluo-3/AM Calcium Ion Fluorescence Labeling method and Lipid Measuring Kit, respectively. SCD-1 gene overexpression was negatively correlated with triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C), and positively correlated with Ca ion, total cholesterol (TC), very low-density lipoprotein cholesterol (VLDL-C) and low density lipoprotein cholesterol (LDL-C) levels. Meanwhile, Ca ion was positively correlated with TG, LDL-C and HDL-C contents, and negatively correlated with TC and VLDL-C levels. Overexpression of SCD-1 gene could regulate Ca ion secretion, as well as lipid synthesis and transport in duck uterine epithelial cells.
Animals
;
Calcium
;
metabolism
;
Coenzyme A Ligases
;
genetics
;
Ducks
;
Epithelial Cells
;
chemistry
;
enzymology
;
Gene Expression
;
Ions
;
Lipids
;
genetics
;
Triglycerides
;
metabolism
5.Effects of alimentary reconstruction on gastrointestinal hormones in a dog model undergoing subtotal gastrectomy
Zaiyuan YE ; Zhenye Lü ; Qinshu SHAO ; Wei ZHANG ; Yuanshui SUN ; Qin ZHANG ; Shuguang LI ; Yuanyu WANG ; Ji XU
Chinese Journal of General Surgery 2010;25(11):900-903
Objective To evaluate effects of alimentary reconstruction procedures (integral continual jejunal interposition, Billroth Ⅱ and isolated jejunal interposition) after subtotal gastrectomy on postoperative plasma gastrin, motilin and cholecystokinin. Methods Twenty-four dogs were divided into 3 groups undergoing distal subtotal gastrectomy and three different digestive tract reconstruction (integral continual jejunal interposition, Billroth Ⅱ and isolated jejunal interposition). The concentration of plasma gastrin, motilin and cholecystokinin were detected by enzyme-linked immunosorbent assay before and after operation. Results Two months after operation, plasma gastrin level of the integral continual jejunal interposition group (2. 2 ±0. 7 ) ng/L, ( 3.9 ± 0. 8 ) ng/L was significantly lower than that of preoperative both in fasting and postprandial state (3.8 ± 1.0) ng/L, (5.3 ± 1.6) ng/L, all P <0.05, but was significantly higher than other two groups in postprandial state (2. 7 ± 1.0) ng/L, (3.6 ±0. 6) ng/L, P <0. 05. Two months after operation, plasma motilin concentration of integral continual jejunal interposition group (577 ±204) ng/L, (1003 ± 209) ng/L were significantly higher than that of preoperative both in fasting and postprandial (429 ± 128) ng/L, (854 ± 218 ) ng/L, P < 0. 05. The postoperative plasma motilin of integral continual jejunal interposition group ( 1003 ± 209 ) ng/L was significantly higher than other two groups in postprandial state (840 ±205) ng/L, (986 ± 189) ng/L, P <0. 05. Two months after operation,plasma cholecystokinin concentration of integral continual jejunal interposition group ( 19.6 ± 2.0 ) ng/Lwere significantly higher than that of preoperative both in postprandial ( 19.0 ± 2. 0) ng/L, P < 0. 05. The postoperative plasma cholecystokinin of integral continual jejunal interposition group ( 19. 6 ± 2. 0) ng/L was significantly lower than other two groups (22.2 ± 2. 1 ) ng/L, (20. 1 ± 2. 5 ) ng/L, P < 0. 05. Conclusion Integral continual jejunal interposition after distal gastrectomy maintains the postoperative plasma motilin and gastrin in a relatively higher level and decreases the concentration of plasma cholecystokinin.

Result Analysis
Print
Save
E-mail