1.Expert consensus on prognostic evaluation of cochlear implantation in hereditary hearing loss.
Xinyu SHI ; Xianbao CAO ; Renjie CHAI ; Suijun CHEN ; Juan FENG ; Ningyu FENG ; Xia GAO ; Lulu GUO ; Yuhe LIU ; Ling LU ; Lingyun MEI ; Xiaoyun QIAN ; Dongdong REN ; Haibo SHI ; Duoduo TAO ; Qin WANG ; Zhaoyan WANG ; Shuo WANG ; Wei WANG ; Ming XIA ; Hao XIONG ; Baicheng XU ; Kai XU ; Lei XU ; Hua YANG ; Jun YANG ; Pingli YANG ; Wei YUAN ; Dingjun ZHA ; Chunming ZHANG ; Hongzheng ZHANG ; Juan ZHANG ; Tianhong ZHANG ; Wenqi ZUO ; Wenyan LI ; Yongyi YUAN ; Jie ZHANG ; Yu ZHAO ; Fang ZHENG ; Yu SUN
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(9):798-808
Hearing loss is the most prevalent disabling disease. Cochlear implantation(CI) serves as the primary intervention for severe to profound hearing loss. This consensus systematically explores the value of genetic diagnosis in the pre-operative assessment and efficacy prognosis for CI. Drawing upon domestic and international research and clinical experience, it proposes an evidence-based medicine three-tiered prognostic classification system(Favorable, Marginal, Poor). The consensus focuses on common hereditary non-syndromic hearing loss(such as that caused by mutations in genes like GJB2, SLC26A4, OTOF, LOXHD1) and syndromic hereditary hearing loss(such as Jervell & Lange-Nielsen syndrome and Waardenburg syndrome), which are closely associated with congenital hearing loss, analyzing the impact of their pathological mechanisms on CI outcomes. The consensus provides recommendations based on multiple round of expert discussion and voting. It emphasizes that genetic diagnosis can optimize patient selection, predict prognosis, guide post-operative rehabilitation, offer stratified management strategies for patients with different genotypes, and advance the application of precision medicine in the field of CI.
Humans
;
Cochlear Implantation
;
Prognosis
;
Hearing Loss/surgery*
;
Consensus
;
Connexin 26
;
Mutation
;
Sulfate Transporters
;
Connexins/genetics*
2.Csde1 Mediates Neurogenesis via Post-transcriptional Regulation of the Cell Cycle.
Xiangbin JIA ; Wenqi XIE ; Bing DU ; Mei HE ; Jia CHEN ; Meilin CHEN ; Ge ZHANG ; Ke WANG ; Wanjing XU ; Yuxin LIAO ; Senwei TAN ; Yongqing LYU ; Bin YU ; Zihang ZHENG ; Xiaoyue SUN ; Yang LIAO ; Zhengmao HU ; Ling YUAN ; Jieqiong TAN ; Kun XIA ; Hui GUO
Neuroscience Bulletin 2025;41(11):1977-1990
Loss-of-function variants in CSDE1 have been strongly linked to neuropsychiatric disorders, yet the precise role of CSDE1 in neurogenesis remains elusive. In this study, we demonstrate that knockout of Csde1 during cortical development in mice results in impaired neural progenitor proliferation, leading to abnormal cortical lamination and embryonic lethality. Transcriptomic analysis revealed that Csde1 upregulates the transcription of genes involved in the cell cycle network. Applying a dual thymidine-labelling approach, we further revealed prolonged cell cycle durations of neuronal progenitors in Csde1-knockout mice, with a notable extension of the G1 phase. Intersection with CLIP-seq data demonstrated that Csde1 binds to the 3' untranslated region (UTR) of mRNA transcripts encoding cell cycle genes. Particularly, we uncovered that Csde1 directly binds to the 3' UTR of mRNA transcripts encoding Cdk6, a pivotal gene in regulating the transition from the G1 to S phases of the cell cycle, thereby maintaining its stability. Collectively, this study elucidates Csde1 as a novel regulator of Cdk6, sheds new light on its critical roles in orchestrating brain development, and underscores how mutations in Csde1 may contribute to the pathogenesis of neuropsychiatric disorders.
Animals
;
Neurogenesis/genetics*
;
Cell Cycle/genetics*
;
Mice, Knockout
;
Mice
;
Neural Stem Cells/metabolism*
;
DNA-Binding Proteins/metabolism*
;
Cyclin-Dependent Kinase 6/genetics*
;
Cell Proliferation
;
3' Untranslated Regions
;
Cerebral Cortex/embryology*
;
RNA-Binding Proteins
;
Mice, Inbred C57BL
3.Administration of Porphyromonas gingivalis in pregnant mice enhances glycolysis and histone lactylation/ADAM17 leading to cleft palate in offspring.
Xige ZHAO ; Xiaoyu ZHENG ; Yijia WANG ; Jing CHEN ; Xiaotong WANG ; Xia PENG ; Dong YUAN ; Ying LIU ; Zhiwei WANG ; Juan DU
International Journal of Oral Science 2025;17(1):18-18
Periodontal disease is a risk factor for many systemic diseases such as Alzheimer's disease and adverse pregnancy outcomes. Cleft palate (CP), the most common congenital craniofacial defect, has a multifaceted etiology influenced by complex genetic and environmental risk factors such as maternal bacterial or virus infection. A prior case-control study revealed a surprisingly strong association between maternal periodontal disease and CP in offspring. However, the precise relationship remains unclear. In this study, the relationship between maternal oral pathogen and CP in offspring was studied by sonicated P. gingivalis injected intravenously and orally into pregnant mice. We investigated an obvious increasing CP (12.5%) in sonicated P. gingivalis group which had inhibited osteogenesis in mesenchyme and blocked efferocytosis in epithelium. Then glycolysis and H4K12 lactylation (H4K12la) were detected to elevate in both mouse embryonic palatal mesenchyme (MEPM) cells and macrophages under P. gingivalis exposure which further promoted the transcription of metallopeptidase domain17 (ADAM17), subsequently mediated the shedding of transforming growth factor-beta receptor 1 (TGFBR1) in MEPM cells and mer tyrosine kinase (MerTK) in macrophages and resulted in the suppression of efferocytosis and osteogenesis in palate, eventually caused abnormalities in palate fusion and ossification. The abnormal efferocytosis also led to a predominance of M1 macrophages, which indirectly inhibited palatal osteogenesis via extracellular vesicles. Furthermore, pharmacological ADAM17 inhibition could ameliorate the abnormality of P. gingivalis-induced abnormal palate development. Therefore, our study extends the knowledge of how maternal oral pathogen affects fetal palate development and provides a novel perspective to understand the pathogenesis of CP.
Animals
;
Female
;
Porphyromonas gingivalis
;
Pregnancy
;
Mice
;
Cleft Palate/etiology*
;
Glycolysis
4.Expert consensus on the treatment of oral diseases in pregnant women and infants.
Jun ZHANG ; Chenchen ZHOU ; Liwei ZHENG ; Jun WANG ; Bin XIA ; Wei ZHAO ; Xi WEI ; Zhengwei HUANG ; Xu CHEN ; Shaohua GE ; Fuhua YAN ; Jian ZHOU ; Kun XUAN ; Li-An WU ; Zhengguo CAO ; Guohua YUAN ; Jin ZHAO ; Zhu CHEN ; Lei ZHANG ; Yong YOU ; Jing ZOU ; Weihua GUO
International Journal of Oral Science 2025;17(1):62-62
With the growing emphasis on maternal and child oral health, the significance of managing oral health across preconception, pregnancy, and infancy stages has become increasingly apparent. Oral health challenges extend beyond affecting maternal well-being, exerting profound influences on fetal and neonatal oral development as well as immune system maturation. This expert consensus paper, developed using a modified Delphi method, reviews current research and provides recommendations on maternal and child oral health management. It underscores the critical role of comprehensive oral assessments prior to conception, diligent oral health management throughout pregnancy, and meticulous oral hygiene practices during infancy. Effective strategies should be seamlessly integrated across the life course, encompassing preconception oral assessments, systematic dental care during pregnancy, and routine infant oral hygiene. Collaborative efforts among pediatric dentists, maternal and child health workers, and obstetricians are crucial to improving outcomes and fostering clinical research, contributing to evidence-based health management strategies.
Humans
;
Pregnancy
;
Female
;
Infant
;
Consensus
;
Mouth Diseases/therapy*
;
Pregnancy Complications/therapy*
;
Oral Health
;
Infant, Newborn
;
Delphi Technique
;
Oral Hygiene
5.Integrated-omics analysis defines subtypes of hepatocellular carcinoma based on circadian rhythm.
Xiao-Jie LI ; Le CHANG ; Yang MI ; Ge ZHANG ; Shan-Shan ZHU ; Yue-Xiao ZHANG ; Hao-Yu WANG ; Yi-Shuang LU ; Ye-Xuan PING ; Peng-Yuan ZHENG ; Xia XUE
Journal of Integrative Medicine 2025;23(4):445-456
OBJECTIVE:
Circadian rhythm disruption (CRD) is a risk factor that correlates with poor prognosis across multiple tumor types, including hepatocellular carcinoma (HCC). However, its mechanism remains unclear. This study aimed to define HCC subtypes based on CRD and explore their individual heterogeneity.
METHODS:
To quantify CRD, the HCC CRD score (HCCcrds) was developed. Using machine learning algorithms, we identified CRD module genes and defined CRD-related HCC subtypes in The Cancer Genome Atlas liver HCC cohort (n = 369), and the robustness of this method was validated. Furthermore, we used bioinformatics tools to investigate the cellular heterogeneity across these CRD subtypes.
RESULTS:
We defined three distinct HCC subtypes that exhibit significant heterogeneity in prognosis. The CRD-related subtype with high HCCcrds was significantly correlated with worse prognosis, higher pathological grade, and advanced clinical stages, while the CRD-related subtype with low HCCcrds had better clinical outcomes. We also identified novel biomarkers for each subtype, such as nicotinamide n-methyltransferase and myristoylated alanine-rich protein kinase C substrate-like 1.
CONCLUSION
We classify the HCC patients into three distinct groups based on circadian rhythm and identify their specific biomarkers. Within these groups greater HCCcrds was associated with worse prognosis. This approach has the potential to improve prediction of an individual's prognosis, guide precision treatments, and assist clinical decision making for HCC patients. Please cite this article as: Li XJ, Chang L, Mi Y, Zhang G, Zhu SS, Zhang YX, et al. Integrated-omics analysis defines subtypes of hepatocellular carcinoma based on circadian rhythm. J Integr Med. 2025; 23(4): 445-456.
Humans
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
Circadian Rhythm/genetics*
;
Prognosis
;
Male
;
Female
;
Biomarkers, Tumor/genetics*
;
Middle Aged
;
Machine Learning
;
Computational Biology
6.Progress on Wastewater-based Epidemiology in China: Implementation Challenges and Opportunities in Public Health.
Qiu da ZHENG ; Xia Lu LIN ; Ying Sheng HE ; Zhe WANG ; Peng DU ; Xi Qing LI ; Yuan REN ; De Gao WANG ; Lu Hong WEN ; Ze Yang ZHAO ; Jianfa GAO ; Phong K THAI
Biomedical and Environmental Sciences 2025;38(11):1354-1358
Wastewater-based epidemiology has emerged as a transformative surveillance tool for estimating substance consumption and monitoring disease prevalence, particularly during the COVID-19 pandemic. It enables the population-level monitoring of illicit drug use, pathogen prevalence, and environmental pollutant exposure. In this perspective, we summarize the key challenges specific to the Chinese context: (1) Sampling inconsistencies, necessitating standardized 24-hour composite protocols with high-frequency autosamplers (≤ 15 min/event) to improve the representativeness of samples; (2) Biomarker validation, requiring rigorous assessment of excretion profiles and in-sewer stability; (3) Analytical method disparities, demanding inter-laboratory proficiency testing and the development of automated pretreatment instruments; (4) Catchment population dynamics, reducing estimation uncertainties through mobile phone data, flow-based models, or hydrochemical parameters; and (5) Ethical and data management concerns, including privacy risks for small communities, mitigated through data de-identification and tiered reporting platforms. To address these challenges, we propose an integrated framework that features adaptive sampling networks, multi-scale wastewater sample banks, biomarker databases with multidimensional metadata, and intelligent data dashboards. In summary, wastewater-based epidemiology offers unparalleled scalability for equitable health surveillance and can improve the health of the entire population by providing timely and objective information to guide the development of targeted policies.
China/epidemiology*
;
Humans
;
Wastewater/analysis*
;
COVID-19/epidemiology*
;
Public Health
;
Wastewater-Based Epidemiological Monitoring
;
SARS-CoV-2
7.Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults (version 2024)
Qingde WANG ; Yuan HE ; Bohua CHEN ; Tongwei CHU ; Jinpeng DU ; Jian DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Hua GUO ; Yong HAI ; Lijun HE ; Dianming JIANG ; Jianyuan JIANG ; Bin LIN ; Bin LIU ; Baoge LIU ; Chunde LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Hongjian LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Tiansheng SUN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Hong XIA ; Guoyong YIN ; Jinglong YAN ; Wen YUAN ; Zhaoming YE ; Jie ZHAO ; Jianguo ZHANG ; Yue ZHU ; Yingjie ZHOU ; Zhongmin ZHANG ; Wei MEI ; Dingjun HAO ; Baorong HE
Chinese Journal of Trauma 2024;40(2):97-106
Ankylosing spondylitis (AS) combined with lower cervical fracture is often categorized into unstable fracture, with a high incidence of neurological injury and a high rate of disability and morbidity. As factors such as shoulder occlusion may affect the accuracy of X-ray imaging diagnosis, it is often easily misdiagnosed at the primary diagnosis. Non-operative treatment has complications such as bone nonunion and the possibility of secondary neurological damage, while the timing, access and choice of surgical treatment are still controversial. Currently, there are no clinical practice guidelines for the treatment of AS combined with lower cervical fracture with or without dislocation. To this end, the Spinal Trauma Group of Orthopedics Branch of Chinese Medical Doctor Association organized experts to formulate Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults ( version 2024) in accordance with the principles of evidence-based medicine, scientificity and practicality, in which 11 recommendations were put forward in terms of the diagnosis, imaging evaluation, typing and treatment, etc, to provide guidance for the diagnosis and treatment of AS combined with lower cervical fracture.
8.Long non-coding RNA AW112010 improves insulin resistance in adipocytes of aging mice through the miR-204/POU2F2 axis
Rui WANG ; Shuwen WANG ; Yifan ZHANG ; Yaqi HU ; Qi YUAN ; Yuan WEN ; Xiaoling CHEN ; Ting LU ; Ying ZHENG ; Zhiyong LIN ; Mengzhen XUE ; Yaqi WANG ; Fangqi XIA ; Leiqi ZHU ; Chengfu YUAN
Chinese Journal of Endocrinology and Metabolism 2024;40(1):44-52
Objective:To investigate whether long non-coding RNA(lncRNA) AW112010 can improve insulin resistance in aging adipocytes through the miR-204/POU2F2 signaling pathway.Methods:In vivo experiment: C57BL/6 mice were divided into young control group(4 months old) and aging model group(18 months old) based on body weight. The expression levels of AW112010, miR-204-5p, POU2F2, aging related indicators(p16, p21), and insulin signaling pathway genes [insulin receptor(INSR), insulin receptor substrate 1(IRS1), phosphatidylinositol kinase(PI3K), protein kinase B(AKT)] in epididymal adipose tissue were detected using real-time fluorescence quantitative PCR(RT-qPCR) and Western blotting. In vitro experiment: Using adriamycin(ADR) to induce 3T3-L1 aging adipocyte model, β-gal staining was used to observe cellular senescence, and miR-204 inhibitor and miR-204 mimic small interfering RNA were successfully constructed and transfected into 3T3-L1 adipocytes. Results:RT-qPCR and Western blot results showed that compared with the young group, the expression of AW112010 in the adipose tissue of aging mice was increased, while the expression of miR-204-5p was decreased. The expressions of POU2F2, p16, and p21 in the adipose tissue of aging mice were increased, while the expressions of INSR, IRS1, PI3K, GLUT4 mRNA and protein were decreased. The β-gal stainging results showed that the number of 3T3-L1 senescent adipocytes induced by ADR was significantly increased, and the expression levels of AW112010, POU2F2, p16, and p21 in ADR-induced senescent adipocytes were increased compared with the control group, while the expression levels of miR-204-5p, INSR, IRS1, PI3K, GLUT4 were decreased, and remaining glucose in the culture medium was increased. Compared with control, overexpression of miR-204 resulted in decreased expressions of aging indicators p16, p21, and target gene POU2F2 while the expressions of INSR and GLUT4 were increased.Conclusion:Upregulation of lncRNA AW112010 in adipocytes of aging mice may induce insulin resistance by targeting miR-204-5p/POU2F2/IRS1.
9.Dayuanyin Regulates TLR/MAPK/NF-κB Pathway for Preventing and Treating Acute Lung Injury Induced by H1N1 Infection
Chengze LI ; Fuhao CHU ; Yuan LI ; Yunze LIU ; Haocheng ZHENG ; Sici WANG ; Yixiao GU ; Wanhong ZHU ; Ruoshi ZHANG ; Xingjian SONG ; Cong GAI ; Xia DING
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(18):52-60
ObjectiveTo investigate the therapeutic effect of Dayuanyin on acute lung injury induced by H1N1 infection and decipher the potential mechanism. MethodThe constituents in Dayuanyin were analyzed by ultra-high performance liquid chromatography-quadrupole-exactive orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap MS). Forty-eight female BALB/c mice were randomized into normal, model, oseltamivir (19.5 mg·kg-1), and low-, medium-, and high-dose (2.73, 5.46, 10.92 g·kg-1) Dayuanyin groups. The normal and model groups were administrated with deionized water by gavage, and the other groups were administrated with the corresponding drugs by gavage. On day 3 of drug administration, the normal group received nasal inhalation of normal saline, and the other groups were inoculated intranasally with A/RP/8/34 (H1N1) for the modeling of influenza virus infection. Mice were administrated with drugs continuously for 7 days and weighed daily. Sampling was performed 12 h after the last administration, and the lung tissue was weighed to calculate the lung index. Hematoxylin-eosin staining was performed to observe the pathological and morphological changes of the lung tissue and bronchi. The cytometric bead array (CBA) was used to measure the serum levels of interferon-gamma (IFN-γ), C-X-C motif ligand 1 (CXCL1), tumor necrosis factor-alpha (TNF-α), chemokine ligand 2 (CCL2), interleukin-12p70 (IL-12p70), chemokine ligand 5 (CCL5), interleukin-1β (IL-1β), chemokine (C-X-C motif) ligand 10 (CXCL10), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-10 (IL-10), interferon-beta (IFN-β), interferon-alpha (IFN-α), and interleukin-6 (IL-6). According to the results of mass spectrometry and network pharmacology, we analyzed the mechanism of Dayuanyin in treating acute lung injury caused by H1N1. The protein levels of extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor-kappa B (NF-κB), and their phosphorylated forms were determined by Western blot. The mRNA levels of myeloid differentiation factor 88 (MyD88), Toll-like receptor 3 (TLR3), Toll-like receptor 7 (TLR7), and Toll-like receptor 8 (TLR8) in the lung tissue were measured by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultA total of 57 compounds, including paeoniflorin and baicalein, were detected in Dayuanyin. Compared with the normal group, the model group showed decreased body weight (P<0.01), lung edema and hemorrhage, increased lung index (P<0.01), and elevated levels of IFN-γ, IL-12p70, CCL5, IL-1β, CXCL10, GM-CSF, IFN-β, and IL-6 (P<0.01). Compared with the model group, Dayuanyin attenuated alveolar wall thickening, capillary congestion, and immune cell infiltration, reduced the alterations in body weight and lung index (P<0.01), and down-regulated the protein levels of IFN-γ, IL-12p70, CCL5, IL-1β, CXCL10, GM-CSF, IFN-β, and IL-6 (P<0.01). A total of 57 key genes were predicted by network pharmacological analysis, of which the MAPK signaling pathway was the main target signaling pathway. Compared with the normal group, the model group showed up-regulation in the protein levels of phosphorylation (p)-ERK1/2, p-p38 MAPK, and p-NF-κB (P<0.01) and the mRNA levels of TLR7, TLR8, MyD88, and TLR3 (P<0.05, P<0.01). Compared with the model group, Dayuanyin lowered the phosphorylation levels of ERK1/2, p38 MAPK, and NF-κB p65 in a dose-dependent manner (P<0.01) and down-regulated the mRNA levels of TLR3, TLR7, TLR8, and MyD88 (P<0.01). ConclusionDayuanyin can prevent and control H1N1 infection-induced acute lung injury by inhibiting the TLR/MAPK/NF-κB signaling pathway.
10.Sonogenetics and its application in military medicine
Ying-Tan ZHUANG ; Bo-Yu LUO ; Xiao-Dong ZHANG ; Tuo-Yu LIU ; Xin-Yue FAN ; Guo-Hua XIA ; Qing YUAN ; Bin ZHENG ; Yue TENG
Medical Journal of Chinese People's Liberation Army 2024;49(3):360-366
Sonogenetics is an emerging synthetic biology technique that uses sound waves to activate mechanosensitive ion channel proteins on the cell surface to regulate cell behavior and function.Due to the widespread presence of mechanically sensitive ion channel systems in cells and the advantages of non-invasion,strong penetrability,high safety and high accuracy of sonogenetics technology,it has great development potential in basic biomedical research and clinical applications,especially in neuronal regulation,tumor mechanism research,sonodynamic therapy and hearing impairment.This review discusses the basic principles of sonogenetics,the development status of sonogenetics and its application in the prevention and treatment of noise-induced hearing loss,summarizes and analyzes the current challenges and future development direction,thus providing a reference for further research and development of sonogenetics in the field of military medicine.

Result Analysis
Print
Save
E-mail