1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Rapid health technology assessment of serplulimab in the first-line treatment of small-cell lung cancer
Yibing HOU ; Shuo KANG ; Yuan GONG ; Xiaohui WANG ; Ying NIE ; Huanlong LIU
China Pharmacy 2025;36(11):1405-1410
OBJECTIVE To evaluate the efficacy, safety and cost-effectiveness of serplulimab as a first-line treatment of small- cell lung cancer (SCLC), and provide an evidence-based basis for drug selection in hospitals. METHODS Rapid health technology assessment was adopted; PubMed, Cochrane Library, Embase, CNKI, Wanfang, VIP and official websites of domestic and international health technology assessment agencies were systematically searched from the inception to Oct. 2024. Two reviewers independently screened the literature, assessed the quality of included studies and carried out the qualitative analysis according to the inclusion and exclusion criteria. RESULTS A total of 13 systematic reviews/meta-analyses and 9 economic studies were included, and the literature quality was generally good. In terms of effectiveness, compared with chemotherapy alone, serplulimab combined with chemotherapy significantly improved progression-free survival, overall survival, and objective response rate in patients with SCLC. In terms of safety, serplulimab combined with chemotherapy showed no significant difference in the incidence of ≥3 grade adverse events compared with chemotherapy alone in the treatment of SCLC, indicating a good safety profile; compared with combination therapies involving other immunosuppressive agents, the incidence rate of adverse events was also lower. In terms of cost-effectiveness, compared with chemotherapy alone, serplulimab combined with chemotherapy is not cost- effective, which may be related to the high price of serplulimab. CONCLUSIONS Serplulimab is effective and safe in the treatment of SCLC, but has no obvious advantage in terms of cost-effectiveness.
6.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
7.The Application of Spatial Resolved Metabolomics in Neurodegenerative Diseases
Lu-Tao XU ; Qian LI ; Shu-Lei HAN ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2025;52(9):2346-2359
The pathogenesis of neurodegenerative diseases (NDDs) is fundamentally linked to complex and profound alterations in metabolic networks within the brain, which exhibit marked spatial heterogeneity. While conventional bulk metabolomics is powerful for detecting global metabolic shifts, it inherently lacks spatial resolution. This methodological limitation hampers the ability to interrogate critical metabolic dysregulation within discrete anatomical brain regions and specific cellular microenvironments, thereby constraining a deeper understanding of the core pathological mechanisms that initiate and drive NDDs. To address this critical gap, spatial metabolomics, with mass spectrometry imaging (MSI) at its core, has emerged as a transformative approach. It uniquely overcomes the limitations of bulk methods by enabling high-resolution, simultaneous detection and precise localization of hundreds to thousands of endogenous molecules—including primary metabolites, complex lipids, neurotransmitters, neuropeptides, and essential metal ions—directly in situ from tissue sections. This powerful capability offers an unprecedented spatial perspective for investigating the intricate and heterogeneous chemical landscape of NDD pathology, opening new avenues for discovery. Accordingly, this review provides a comprehensive overview of the field, beginning with a discussion of the technical features, optimal application scenarios, and current limitations of major MSI platforms. These include the widely adopted matrix-assisted laser desorption/ionization (MALDI)-MSI, the ultra-high-resolution technique of secondary ion mass spectrometry (SIMS)-MSI, and the ambient ionization method of desorption electrospray ionization (DESI)-MSI, along with other emerging technologies. We then highlight the pivotal applications of spatial metabolomics in NDD research, particularly its role in elucidating the profound chemical heterogeneity within distinct pathological microenvironments. These applications include mapping unique molecular signatures around amyloid β‑protein (Aβ) plaques, uncovering the metabolic consequences of neurofibrillary tangles composed of hyperphosphorylated tau protein, and characterizing the lipid and metabolite composition of Lewy bodies. Moreover, we examine how spatial metabolomics contributes to constructing detailed metabolic vulnerability maps across the brain, shedding light on the biochemical factors that render certain neuronal populations and anatomical regions selectively susceptible to degeneration while others remain resilient. Looking beyond current applications, we explore the immense potential of integrating spatial metabolomics with other advanced research methodologies. This includes its combination with three-dimensional brain organoid models to recapitulate disease-relevant metabolic processes, its linkage with multi-organ axis studies to investigate how systemic metabolic health influences neurodegeneration, and its convergence with single-cell and subcellular analyses to achieve unprecedented molecular resolution. In conclusion, this review not only summarizes the current state and critical role of spatial metabolomics in NDD research but also offers a forward-looking perspective on its transformative potential. We envision its continued impact in advancing our fundamental understanding of NDDs and accelerating translation into clinical practice—from the discovery of novel biomarkers for early diagnosis to the development of high-throughput drug screening platforms and the realization of precision medicine for individuals affected by these devastating disorders.
8.Experimental study on the effects of panobinostat on melanoma growth and immunogenicity mechanisms
LIANG Anjing1,2 ; CHENG Liang3 ; XIANG Su1,2 ; HOU Jue1 ; YUAN Rong1,2 ; CHEN Zhu1,2
Chinese Journal of Cancer Biotherapy 2025;32(9):957-967
[摘 要] 目的:探究组蛋白去乙酰化酶(HDAC)抑制剂帕比司他对黑色素瘤生长和免疫性的影响及其机制。方法:常规培养黑色素瘤细胞B16F0,用不同浓度的帕比司他处理细胞,WB法检测帕比司他对B16F0细胞中HDAC表达的影响,CCK-8法、划痕愈合实验、Transwell实验和流式细胞术分别检测帕比司他对B16F0细胞增殖、迁移和侵袭能力,以及细胞凋亡和周期的影响。转录组学检测帕比司他对B16F0细胞基因表达的影响,用qPCR法加以验证。流式细胞术检测帕比司他对B16F0细胞表面MHC Ⅰ/Ⅱ类分子表达的影响,B16F0与骨髓来源树突状细胞(BMDC)共培养检测帕比司他对BMDC细胞表达CD11c、CD80和CD86的影响,B16F0细胞移植瘤实验检测帕比司他对移植瘤生长和裸鼠免疫功能的影响。结果:帕比司他促进B16F0细胞中组蛋白3(H3)和α-微管蛋白(α-TUB)蛋白乙酰化(P < 0.01或P < 0.001或P < 0.000 1),抑制B16F0细胞增殖、迁移和侵袭能力,促进其凋亡,并使细胞周期阻滞于G1期(P < 0.05或P < 0.001或P < 0.000 1),促进B16F0细胞表面表达MHC Ⅰ/Ⅱ类分子表达并促进共培养BMDC成熟(均P < 0.01)。转录组学检测结果显示,帕比司他促进B16F0细胞中E-cadherin和抗原提呈相关基因的表达,抑制N-cadherin、vimentin、c-Myc和CDK1的表达,qPCR法验证了这些结果。帕比司他抑制裸鼠移植瘤的生长并增强荷瘤裸鼠的免疫功能(P < 0.05, P < 0.000 1)。结论:帕比司他可抑制B16F0细胞的恶性生物学行为,促进其凋亡,调控其免疫性,增强荷瘤裸鼠的免疫功能。
9.Finite element analysis of the mechanism of dorsiflexion injury of wrist joint in elderly people after falls
Zexin HOU ; Benke XU ; Yuan DAI ; Chuan HE ; Chaoju ZHANG ; Xiaolin LI
Chinese Journal of Tissue Engineering Research 2024;28(6):886-890
BACKGROUND:At present,wrist protection products designed in and outside China have not solved the contradiction between protecting the wrist joint from injury and maintaining the flexible movement of the wrist joint. OBJECTIVE:To investigate the biomechanical mechanism of dorsiflexion injury of the wrist joint in elderly people after falls,and to provide a biomechanical basis for the prevention and treatment of wrist injury in elderly people after falls. METHODS:A 65-year-old man was selected to obtain the original data by uninterrupted CT scan of the middle and lower 2/3 of his left forearm up to the end of the finger.A finite element model of wrist dorsiflexion was established using ANSYS 12.0 finite element software.The palm surface of the model was constrained,and the model at a velocity load of 2 m/s in the direction of vertical downward was given to simulate the injury state of the palm when the elderly fall.The stress distribution of the soft tissues and bones of the wrist joint and the change of the stress with time were observed after the load was applied. RESULTS AND CONCLUSION:(1)A realistic and effective finite element model of the dorsal extension position of the wrist joint of the elderly was established.The soft tissue stresses were mainly concentrated in the small fissure of the palm and the dorsal side of the wrist after loading.The skeletal stresses were mainly concentrated in the lower end of the ulnar radius dorsally.The stresses in the lower end of the radius were the greatest.The palmar stresses were mainly concentrated in the middle and lower 1/3 of the radius and the hook bone.The stress distribution of the ulnar radius was asymmetric,and the stresses in the radius were more concentrated.(2)The results of the study are consistent with the clinical situation of a fallen wrist injury in elderly people,and can be used to explain the mechanism of wrist dorsiflexion injury,which can provide the biomechanical basis for the design of wrist protection devices that can be used to prevent wrist injury induced by falling and the treatment of wrist injury in elderly people.
10.Early retinal degeneration and activation of microglia in C57BL/6N mice
Huan MENG ; Tingting DENG ; Ziqiang LIU ; Xiaoyu HOU ; Chuanzheng MA ; Wei YUAN ; Ming JIN
International Eye Science 2024;24(10):1536-1541
AIM: To observe the early retinal degeneration and activation of microglia in C57BL/6N(Crb1rd8/rd8)mice.METHODS:Totally 15 male SPF C57BL/6N mice and 15 male SPF C57BL/6J mice were raised normally, and fundus photography examinations were performed by Micron-Ⅲ at the time of 0, 4, 8, 12 wk of enrollment to calculate the number and area of retinopathy. At the end of experiment, all mice were sacrificed and the right eyeballs were removed to prepare retinal tissue slices. After HE staining, the retinal tissue morphology was observed under optical microscope while the location and level of CX3CR1 expression were detected in immunohistochemical staining. The left eyeballs were removed to isolate retina, then Western-Blot was used to analyze the expression of CD86 and CD206 proteins in retina, and the concentration of IL-1β, IL-6, TNF-α, IL-4 and IL-10 in retina was detected by electrochemiluminescence.RESULTS:The result of fundus photography examinations showed that the number of retinopathy in the C57BL/6N significantly increased at 4, 8, and 12 wk, and there were differences in variations compared with the C57BL/6J at the same time point(all P<0.05). In the changes in area of retinopathy, there was a difference between two groups at 12 wk(P<0.05), but no difference in variations within groups(both P>0.05). HE staining of retinal tissue showed that the retinal structure of C57BL/6N mice was abnormal, with loose and disordered cell arrangement, and the photoreceptor layer was obviously protruding to the inner side of retina with a drusen-like protrusion. The retinal structure of C57BL/6J mice was clearer, with orderly cell arrangement and no obvious abnormality. Immunohistochemical results showed that CX3CR1 was highly expressed in ganglion cell layer, inner and outer plexiform layer, photoreceptor cell layer and lesion in the retina of C57BL/6N mice, with a mean density of 0.285±0.056 in C57BL/6N and 0.189±0.084 in C57BL/6J mice(P<0.05). The results of Western-Blot showed that the expression of CD86 and CD206 in retina of C57BL/6N increased compared with that in C57BL/6J to varying degrees, and the difference of CD86 was statistically significant(P<0.05). The results of cytokine detection showed that the level of IL-1β, TNF-α in C57BL/6N was significantly higher than that of C57BL/6J, while IL-10 was significantly lower(all P<0.05).CONCLUSION: The retinal degeneration of C57BL/6N(Crb1rd8/rd8)mice progressed slowly and gradually aggravated with age. The retinal structure of the lesion was disordered and accompanied by microglial infiltration dominated by M1 polarization.

Result Analysis
Print
Save
E-mail