1.The Role of Autophagy in Erectile Dysfunction
Changjing WU ; Yang XIONG ; Fudong FU ; Fuxun ZHANG ; Feng QIN ; Jiuhong YUAN
The World Journal of Men's Health 2025;43(1):28-40
Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future.
2.Identification of Alumen and Ammonium alum Based on XRD, FTIR, TG-DTA Combined with Chemometrics
Bin WANG ; Jingwei ZHOU ; Huangsheng ZHANG ; Jian FENG ; Hanxi LI ; Guorong MEI ; Jiaquan JIANG ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU ; Shilin CHEN ; Lin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):178-186
ObjectiveTo establish the multi-technique characteristic profiles of Alumen by X-ray diffraction(XRD), Fourier-transform infrared spectroscopy(FTIR) and thermogravimetric-differential thermal analysis(TG-DTA), and to explore the spectral characteristics for rapid identification of Alumen and its potential adulterant, Ammonium alum. MethodsA total of 27 batches of Alumen samples from 8 production regions were collected for preliminary identification based on visual characteristics. The PDF standard cards of XRD were used to differentiate Alumen from A. alum, and the XRD characteristic profiles of Alumen were established, and then the common peaks were screened. Based on hierarchical clustering analysis(HCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), the characteristic information that could be used for identification of Alumen was selected with variable importance in the projection(VIP) value>1. FTIR characteristic profiles of Alumen were established, and key wavenumbers for identification were screened by HCA and OPLS-DA with VIP value>1. Meanwhile, the thermogravimetric differences between Alumen and A. alum were analyzed by TG-DTA, and the thermogravimetric traits that could be used for identification were screened. ResultsAlumen and A. alum could not be effectively distinguished by traits alone. However, by comparing the PDF standard cards of XRD, 15 batches of Alumen and 12 batches of A. alum could be distinguished. In the XRD profiles, 10 characteristic peaks were confirmed, corresponding to diffraction angles of 14.560°, 24.316°, 12.620°, 32.122°, 17.898°, 34.642°, 27.496°, 46.048°, 40.697° and 21.973°. In the FTIR profiles, 4 wavenumber ranges(399.193-403.050, 1 186.010-1 471.420, 1 801.190-2 620.790, 3 612.020-3 997.710 cm-1) and 12 characteristic wavenumbers(1 428.994, 1 430.922, 1 432.851, 1 434.779, 1 436.708, 1 438.636, 1 440.565, 1 442.493, 1 444.422, 1 446.350, 1 448.279, 1 450.207 cm-1) were identified. In the TG-DTA profiles, there were characteristic decomposition peaks of ammonium ion and mass reduction features near 555.34 ℃ for A. alum. These characteristics could serve as important criteria for distinguishing the authenticity of Alumen. ConclusionXRD, FTIR and TG-DTA can be used to rapidly detect Alumen and A. alum, and combined with the discriminant features selected through chemometrics, the rapid and accurate identification of Alumen and A. alum can be achieved. The research findings provide new approaches for the rapid identification of Alumen.
3.Identification of Alumen and Ammonium alum Based on XRD, FTIR, TG-DTA Combined with Chemometrics
Bin WANG ; Jingwei ZHOU ; Huangsheng ZHANG ; Jian FENG ; Hanxi LI ; Guorong MEI ; Jiaquan JIANG ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU ; Shilin CHEN ; Lin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):178-186
ObjectiveTo establish the multi-technique characteristic profiles of Alumen by X-ray diffraction(XRD), Fourier-transform infrared spectroscopy(FTIR) and thermogravimetric-differential thermal analysis(TG-DTA), and to explore the spectral characteristics for rapid identification of Alumen and its potential adulterant, Ammonium alum. MethodsA total of 27 batches of Alumen samples from 8 production regions were collected for preliminary identification based on visual characteristics. The PDF standard cards of XRD were used to differentiate Alumen from A. alum, and the XRD characteristic profiles of Alumen were established, and then the common peaks were screened. Based on hierarchical clustering analysis(HCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), the characteristic information that could be used for identification of Alumen was selected with variable importance in the projection(VIP) value>1. FTIR characteristic profiles of Alumen were established, and key wavenumbers for identification were screened by HCA and OPLS-DA with VIP value>1. Meanwhile, the thermogravimetric differences between Alumen and A. alum were analyzed by TG-DTA, and the thermogravimetric traits that could be used for identification were screened. ResultsAlumen and A. alum could not be effectively distinguished by traits alone. However, by comparing the PDF standard cards of XRD, 15 batches of Alumen and 12 batches of A. alum could be distinguished. In the XRD profiles, 10 characteristic peaks were confirmed, corresponding to diffraction angles of 14.560°, 24.316°, 12.620°, 32.122°, 17.898°, 34.642°, 27.496°, 46.048°, 40.697° and 21.973°. In the FTIR profiles, 4 wavenumber ranges(399.193-403.050, 1 186.010-1 471.420, 1 801.190-2 620.790, 3 612.020-3 997.710 cm-1) and 12 characteristic wavenumbers(1 428.994, 1 430.922, 1 432.851, 1 434.779, 1 436.708, 1 438.636, 1 440.565, 1 442.493, 1 444.422, 1 446.350, 1 448.279, 1 450.207 cm-1) were identified. In the TG-DTA profiles, there were characteristic decomposition peaks of ammonium ion and mass reduction features near 555.34 ℃ for A. alum. These characteristics could serve as important criteria for distinguishing the authenticity of Alumen. ConclusionXRD, FTIR and TG-DTA can be used to rapidly detect Alumen and A. alum, and combined with the discriminant features selected through chemometrics, the rapid and accurate identification of Alumen and A. alum can be achieved. The research findings provide new approaches for the rapid identification of Alumen.
4.The Role of Autophagy in Erectile Dysfunction
Changjing WU ; Yang XIONG ; Fudong FU ; Fuxun ZHANG ; Feng QIN ; Jiuhong YUAN
The World Journal of Men's Health 2025;43(1):28-40
Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future.
5.The Role of Autophagy in Erectile Dysfunction
Changjing WU ; Yang XIONG ; Fudong FU ; Fuxun ZHANG ; Feng QIN ; Jiuhong YUAN
The World Journal of Men's Health 2025;43(1):28-40
Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future.
6.The Role of Autophagy in Erectile Dysfunction
Changjing WU ; Yang XIONG ; Fudong FU ; Fuxun ZHANG ; Feng QIN ; Jiuhong YUAN
The World Journal of Men's Health 2025;43(1):28-40
Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future.
7.The Role of Autophagy in Erectile Dysfunction
Changjing WU ; Yang XIONG ; Fudong FU ; Fuxun ZHANG ; Feng QIN ; Jiuhong YUAN
The World Journal of Men's Health 2025;43(1):28-40
Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future.
8.Effects of total extract of Anthriscus sylvestris on immune inflammation and thrombosis in rats with pulmonary arterial hypertension based on TGF-β1/Smad3 signaling pathway.
Ya-Juan ZHENG ; Pei-Pei YUAN ; Zhen-Kai ZHANG ; Yan-Ling LIU ; Sai-Fei LI ; Yuan RUAN ; Yi CHEN ; Yang FU ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(9):2472-2483
This study aimed to explore the effects and mechanisms of total extracts from Anthriscus sylvestris on pulmonary hypertension in rats. Sixty male SD rats were divided into normal(NC) group, model(M) group, positive drug sildenafil(Y) group, low-dose A. sylvestris(ES-L) group, medium-dose A. sylvestris(ES-M) group, and high-dose A. sylvestris(ES-H) group. On day 1, rats were intraperitoneally injected with monocrotaline(60 mg·kg~(-1)) to induce pulmonary hypertension, and the rat model was established on day 28. From days 15 to 28, intragastric administration of the respective treatments was performed. After modeling and treatment, small animal echocardiography was used to detect the right heart function of the rats. Arterial blood gas was measured using a blood gas analyzer. Hematoxylin and eosin(HE) staining and Masson staining were performed to observe cardiopulmonary pathological damage. Flow cytometry was used to detect apoptosis in the lung and myocardial tissues and reactive oxygen species(ROS) levels. Western blot was applied to detect the expression levels of transforming growth factor-β1(TGF-β1), phosphorylated mothers against decapentaplegic homolog 3(p-Smad3), Smad3, tissue plasminogen activator(t-PA), and plasminogen activator inhibitor-1(PAI-1) in lung tissue. A blood routine analyzer was used to measure inflammatory immune cell levels in the blood. Enzyme-linked immunosorbent assay(ELISA) was used to detect the expression levels of P-selectin and thromboxane A2(TXA2) in plasma. The results showed that, compared with the NC group, right heart hypertrophy index, right ventricular free wall thickness, right heart internal diameter, partial carbon dioxide pressure(PaCO_2), apoptosis in cardiopulmonary tissue, and ROS levels were significantly increased in the M group. In contrast, the ratio of pulmonary blood flow acceleration time(PAT)/ejection time(PET), right cardiac output, change rate of right ventricular systolic area, systolic displacement of the tricuspid ring, oxygen partial pressure(PaO_2), and blood oxygen saturation(SaO_2) were significantly decreased in the M group. After administration of the total extract of A. sylvestris, right heart function and blood gas levels were significantly improved, while apoptosis in cardiopulmonary tissue and ROS levels significantly decreased. Further testing revealed that the total extract of A. sylvestris significantly decreased the levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and PAI-1 proteins in lung tissue, while increasing the expression of t-PA. Additionally, the extract reduced the levels of inflammatory cells such as leukocytes, lymphocytes, granulocytes, and monocytes in the blood, as well as the levels of P-selectin and TXA2 in plasma. Metabolomics results showed that the total extract of A. sylvestris significantly affected metabolic pathways, including arginine biosynthesis, tyrosine metabolism, and taurine and hypotaurine metabolism. In conclusion, the total extract of A. sylvestris may exert an anti-pulmonary hypertension effect by inhibiting the TGF-β1/Smad3 signaling pathway, thereby alleviating immune-inflammatory responses and thrombosis.
Animals
;
Male
;
Smad3 Protein/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Signal Transduction/drug effects*
;
Hypertension, Pulmonary/genetics*
;
Thrombosis/immunology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Apoptosis/drug effects*
9.Triclocarban impacts human sperm motility by inhibiting glycolysis and oxidative phosphorylation.
Long-Long FU ; Wei-Zhou WANG ; Yan FENG ; Fu CHEN ; Bin LIU ; Liang HUANG ; Lin-Yuan ZHANG ; Lei CHEN
Asian Journal of Andrology 2025;27(6):707-713
Triclocarban (TCC) is a broad-spectrum antimicrobial widely used in various personal care products, textiles, and children's toys. TCC has potential reproductive and developmental toxicity in animals. However, little is known regarding the effect of TCC on human sperm function. In this study, an in vitro assay was used to investigate the effects of TCC on normal human spermatozoa and the possible underlying mechanisms involved. Semen from healthy male donors was collected and cultured in complete Biggers, Whitten and Whittingham (BWW) and low-sugar BWW media, followed by treatment with TCC at concentrations of 0, 0.1 µmol l -1 , 1 µmol l -1 , 10 µmol l -1 , and 100 µmol l -1 for 4 h. TCC was found to reduce the sperm total motility and progressive motility. Moreover, the sperm kinematic parameters, straight-line velocity (VSL), average path velocity (VAP), and curvilinear velocity (VCL) were affected in a dose-dependent manner. After treatment with TCC at the lowest effective concentration of 10 µmol l -1 , TCC caused a significant decrease in mitochondrial adenosine triphosphate (ATP) production and mitochondrial membrane potential (MMP) and a significant increase in reactive oxygen species (ROS), similar to the observations with the positive control carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), suggesting that TCC may decrease sperm motility by affecting the oxidative phosphorylation (OXPHOS) pathway. In a sugar-free and low-sugar BWW culture environment, TCC enhanced the damaging effect on sperm motility and ATP, MMP, and lactate decreased significantly, suggesting that TCC may also affect the glycolytic pathway that supplies energy to spermatozoa. This study demonstrates a possible mechanism of TCC toxicity in spermatozoa involving both the OXPHOS and glycolysis pathways.
Male
;
Sperm Motility/drug effects*
;
Humans
;
Carbanilides/pharmacology*
;
Oxidative Phosphorylation/drug effects*
;
Glycolysis/drug effects*
;
Membrane Potential, Mitochondrial/drug effects*
;
Adenosine Triphosphate/metabolism*
;
Spermatozoa/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Mitochondria/metabolism*
10.Clinical Characteristics and Prognosis of Primary Pulmonary Lymphoma.
You-Fan FENG ; Yuan-Yuan ZHANG ; Xiao Fang WEI ; Qi-Ke ZHANG ; Li ZHAO ; Xiao-Qin LIANG ; Yuan FU ; Fei LIU ; Yang-Yang ZHAO ; Xiu-Juan HUANG ; Qing-Fen LI
Journal of Experimental Hematology 2025;33(2):387-392
OBJECTIVE:
To investigate the clinical characteristics and prognosis of primary pulmonary lymphoma (PPL).
METHODS:
The clinical data of 17 patients with PPL admitted to Gansu Provincial Hospital from January 2013 to June 2023 were collected, and their clinical characteristics and prognosis were retrospectively analyzed and summarized.
RESULTS:
The median age of the 17 patients was 56 (29-73) years old. There were 8 males and 9 females. According to Ann Arbor staging system, there were 9 patients with stage I-II and 8 patients with stage III-IV. There were 14 patients with IPI score of 0-2 and 3 patients with IPI score of 3-4. All 17 patients had symptoms at the initial diagnosis, most of the first symptoms were cough, and 6 patients had B symptoms.Among the 17 patients, there were 8 cases of diffuse large B-cell lymphoma (DLBCL), 5 cases of mucosa-associated lymphoid tissue (MALT) lymphoma, 1 case of gray zone lymphoma (GZL), and 3 cases of Hodgkin's lymphoma (HL). 15 patients received chemotherapy, of which 3 cases received autologous hematopoietic stem cell transplantation(ASCT) and 3 cases received radiotherapy; 2 patients did not receive treatment. The median number of chemotherapy courses was 6(2-8). The short-term efficacy was evaluated, 12 patients achieved complete remission (CR) and 3 patients achieved partial remission (PR). The age, pathological subtype, sex, Ann Arbor stage, β2-microglobulin(β2-MG) level, lactate dehydrogenase(LDH) level were not correlated with CR rate (P >0.05), while IPI score was correlated with recent CR rate (P < 0.05 ). The median follow-up time was 31(2-102) months. One of the 12 CR patients died of COVID-19, and the rest survived. Among the 3 patients who did not reach CR, 1 died after disease progression, while the other 2 survived. One of the 2 untreated patients died one year after diagnosis. Both the median progression-free survival (PFS) time and overall survival (OS) time of the 17 patients were both 31 (2-102) months.
CONCLUSION
The incidence of PPL is low, and the disease has no specific clinical manifestations, which is easily missed and misdiagnosed. The pathological subtypes are mainly MALT lymphoma and DLBCL, and the treatment is mainly combined chemotherapy. The IPI score is related to the treatment efficacy.
Humans
;
Middle Aged
;
Male
;
Female
;
Adult
;
Prognosis
;
Aged
;
Lung Neoplasms/therapy*
;
Retrospective Studies
;
Neoplasm Staging
;
Lymphoma/therapy*
;
Lymphoma, Large B-Cell, Diffuse

Result Analysis
Print
Save
E-mail