1.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.The Applications and Challenges of Generative Artificial Intelligence in Theoretical and Case Analysis Assessment for Resident Physician Education
Yuankai ZHOU ; Jun SUN ; Shengjun LIU ; Yingying YANG ; Siyi YUAN ; Huaiwu HE ; Yun LONG
Medical Journal of Peking Union Medical College Hospital 2025;16(5):1352-1356
Generative artificial intelligence (GAI) represents a prominent research focus in medicine, with medical education being a key application area. GAI demonstrates potential to enhance residency training efficacy through personalized instruction, automated assessment item generation, question bank updating, and intelligent scoring systems. However, current limitations exist regarding output accuracy and content consistency. To address these constraints, strategic measures are required: continuous GAI model refinement, development of standardized usage guidelines, enhanced data quality control, and implementation of human verification protocols for generated content. Concurrently, residents should proactively acquire GAI utilization skills to strengthen the practical application of theoretical knowledge. With these advancements, GAI is anticipated to evolve into a valuable asset for improving the efficiency and quality of residency training programs.
5.Rapid characterization and identification of non-volatile components in Rhododendron tomentosum by UHPLC-Q-TOF-MS method.
Su-Ping XIAO ; Long-Mei LI ; Bin XIE ; Hong LIANG ; Qiong YIN ; Jian-Hui LI ; Jie DU ; Ji-Yong WANG ; Run-Huai ZHAO ; Yan-Qin XU ; Yun-Bo SUN ; Zong-Yuan LU ; Peng-Fei TU
China Journal of Chinese Materia Medica 2025;50(11):3054-3069
This study aimed to characterize and identify the non-volatile components in aqueous and ethanolic extracts of the stems and leaves of Rhododendron tomentosum by using sensitive and efficient ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS) combined with a self-built information database. By comparing with reference compounds, analyzing fragment ion information, searching relevant literature, and using a self-built information database, 118 compounds were identified from the aqueous and ethanolic extracts of R. tomentosum, including 35 flavonoid glycosides, 15 phenolic glycosides, 12 flavonoids, 7 phenolic acids, 7 phenylethanol glycosides, 6 tannins, 6 phospholipids, 5 coumarins, 5 monoterpene glycosides, 6 triterpenes, 3 fatty acids, and 11 other types of compounds. Among them, 102 compounds were reported in R. tomentosum for the first time, and 36 compounds were identified by comparing them with reference compounds. The chemical components in the ethanolic and aqueous extracts of R. tomentosum leaves and stems showed slight differences, with 84 common chemical components accounting for 71.2% of the total 118 compounds. This study systematically characterized and identified the non-volatile chemical components in the ethanolic and aqueous extracts of R. tomentosum for the first time. The findings provide a reference for active ingredient research, quality control, and product development of R. tomentosum.
Rhododendron/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Plant Leaves/chemistry*
6.A photodynamic nanohybrid system reverses hypoxia and augment anti-primary and metastatic tumor efficacy of immunotherapy.
Haitao YUAN ; Xiaoxian WANG ; Xin SUN ; Di GU ; Jinan GUO ; Wei HUANG ; Jingbo MA ; Chunjin FU ; Da YIN ; Guohua ZENG ; Ying LONG ; Jigang WANG ; Zhijie LI
Acta Pharmaceutica Sinica B 2025;15(6):3243-3258
Photodynamic immunotherapy is a promising strategy for cancer treatment. However, the dysfunctional tumor vasculature results in tumor hypoxia and the low efficiency of drug delivery, which in turn restricts the anticancer effect of photodynamic immunotherapy. In this study, we designed photosensitive lipid nanoparticles. The synthesized PFBT@Rox Lip nanoparticles could produce type I/II reactive oxygen species (ROS) by electron or energy transfer through PFBT under light irradiation. Moreover, this nanosystem could alleviate tumor hypoxia and promote vascular normalization through Roxadustat. Upon irradiation with white light, the ROS produced by PFBT@Rox Lip nanoparticles in situ dysregulated calcium homeostasis and triggered endoplasmic reticulum stress, which further promoted the release of damage-associated molecular patterns, enhanced antigen presentation, and stimulated an effective adaptive immune response, ultimately priming the tumor microenvironment (TME) together with the hypoxia alleviation and vessel normalization by Roxadustat. Indeed, in vivo results indicated that PFBT@Rox Lip nanoparticles promoted M1 polarization of tumor-associated macrophages, recruited more natural killer cells, and augmented infiltration of T cells, thereby leading to efficient photodynamic immunotherapy and potentiating the anti-primary and metastatic tumor efficacy of PD-1 antibody. Collectively, photodynamic immunotherapy with PFBT@Rox Lip nanoparticles efficiently program TME through the induction of immunogenicity and oxygenation, and effectively suppress tumor growth through immunogenic cell death and enhanced anti-tumor immunity.
7.Chlorogenic acid mitigates glucocorticoid-induced osteoporosis via modulation of HER2/AKT/mTOR signaling pathway.
An-Na XIE ; Sun-Zheng-Yuan ZHANG ; Yu ZHANG ; Jin-Long CAO ; Cheng-Long WANG ; Li-Bo WANG ; Hong-Jin WU ; Jie ZHANG ; Wei-Wei DAI
Journal of Integrative Medicine 2025;23(6):670-682
OBJECTIVE:
Glucocorticoid-induced osteoporosis (GIOP) is a common complication of prolonged glucocorticoid therapy. Chlorogenic acid (CGA), a polyphenol with antioxidant properties that is extracted from traditional Chinese medicines such as Eucommiae Cortex, has potential anti-osteoporotic activity. This study aimed to investigate the possible effects of CGA on GIOP in mice and murine long bone osteocyte Y4 (MLO-Y4) cells and explore the underlying molecular mechanisms.
METHODS:
The protective effects of CGA were initially evaluated in the GIOP mouse model induced by dexamethasone (Dex). The micro-computed tomography, hematoxylin-eosin staining, silver nitrate staining, and serum detection were used to assess the efficacy of CGA for improving bone formation in vivo. Then, network pharmacology analysis was used to predict the potential targets and molecular mechanisms underlying the therapeutic efficacy of CGA against GIOP. After that, 2',7'-dichlorofluorescein diacetate staining, flow cytometry, real-time quantitative reverse transcription polymerase chain reaction, and Western blotting were used to verify the mechanisms of CGA against GIOP in vitro.
RESULTS:
Animal experiments showed that CGA treatment effectively attenuated Dex-induced decreases in bone mass and strength and improved disrupted osteocyte morphology in mice. The protein-protein interaction analysis highlighted erb-b2 receptor tyrosine kinase (ERBB2), which is also known as human epidermal growth factor receptor 2 (HER2), caspase-3, kinase insert domain receptor, matrix metallopeptidase 9, matrix metallopeptidase 2, proto-oncogene tyrosine-protein kinase Src, and epidermal growth factor receptor as core targets. The Kyoto Encyclopedia of Genes and Genomes analysis revealed several significantly enriched pathways (P < 0.05), including the ERBB, phosphoinositide 3 kinase-AKT serine/threonine kinase 1 (AKT), and mechanistic target of rapamycin kinase (mTOR) pathways. Cellular experiments verified that CGA enhanced bone formation and promoted autophagy while inhibiting apoptosis in MLO-Y4 cells exposed to Dex, which was associated with the upregulated expression of HER2 and activation of the HER2/AKT/mTOR signaling pathway.
CONCLUSION
CGA exerted anti-osteoporotic effects against GIOP, partially through targeting osteocytes and modulating the HER2/AKT/mTOR signaling pathway. Please cite this article as: Xie AN, Zhang SZY, Zhang Y, Cao JL, Wang CL, Wang LB, Wu HJ, Zhang J, Dai WW. Chlorogenic acid mitigates glucocorticoid-induced osteoporosis via modulation of HER2/AKT/mTOR signaling pathway. J Integr Med. 2025; 23(6):670-682.
Animals
;
Chlorogenic Acid/therapeutic use*
;
Osteoporosis/metabolism*
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Mice
;
Glucocorticoids/adverse effects*
;
Receptor, ErbB-2/metabolism*
;
Proto-Oncogene Mas
;
Dexamethasone/adverse effects*
;
Osteocytes/drug effects*
;
Osteogenesis/drug effects*
;
Male
;
Cell Line
;
Mice, Inbred C57BL
;
Humans
8.Mechanism of Morinda officinalis iridoid glycosides alleviates bone deterioration in type II collagen-induced arthritic rats through down-regulating GSK-3β to inhibit JAK2/STAT3 and NF-κ B signaling pathway
Yi SHEN ; Yi-qi SUN ; He-ming LI ; Xin-yuan YE ; Jin-man DU ; Rong-hua BAO ; Quan-long ZHANG ; Lu-ping QIN ; Qiao-yan ZHANG
Acta Pharmaceutica Sinica 2024;59(10):2763-2772
This study aimed to investigate the therapeutic effects of
9.Factors influencing the length of hospital stays of the AFLP patients and the establishment of prediction model
Guihua DENG ; Yachun SUN ; Leiping WANG ; Xinyan LONG ; Shunling YUAN ; Xiaopeng YUAN ; Qingbao MENG
Chinese Journal of Blood Transfusion 2024;37(4):431-438
【Objective】 To investigate the factors influencing the length of hospital stays of the acute fatty liver of pregnancy (AFLP) patients, so as to establish the prediction model. 【Methods】 A total of 49 patients diagnosed as AFLP)in ShenZhen People’s Hospital between January 2008 and January 2023 were retrospectively analyzed. According to the median length of hospital stays, the patients were divided into two groups: Group A(n=21)and Group B(n=28). Preoperative general laboratory data, clinical features and postpartum adverse outcomes in both groups were analyzed. Multivariate binary logistic regression was used to analyze the independent factors affecting the length of hospital stays for AFLP, and a prediction model for hospitalization time was established. 【Results】 Comparison between Group B and Group A were as follows: hospital stays(d)(15.5 vs 8), preoperative icterus(%)[16(57.1%)vs 3(14.3%)], thrombin time(TT)(s)(24.2 vs 21.3), prothrombin time(PT)(s)(16.8 vs 15.3), activated partial thromboplastin time(APTT)(s)(52.3 vs 40.7), total bilirubin(TBIL)(μmol/L)(77.2 vs 45.2), indirect bilirubin(IBIL)(μmol/L)(21.2 vs 10), creatinine(Cre)(μmol/L)[(171.97±53.34) vs (131.81±45.06]), TT extension(%)[24(85.7%)vs 11(52.4%)], APTT extension(%)[27(96.4%)vs 7(33.3%)], IBIL elevation(%)[19(67.9%)vs 4(19%)], Cre concentration rise(%)[21(75%)vs 8(38%)], number of postpartum plasma exchange sessions(%)[23(82.1%)vs 5(23.8%)], postpregnancy co-infection phenomenon(%)[21(75%)vs 4(19%)], with Group B significantly higher than Group A. The preoperative platelet count(×109/L)(128 vs 221)and the concentration of fibrinogen(g/L)[0.9 vs 1.6] in Group B were significantly lower than those in Group A. Univariate logistic regression analysis showed that preoperative icterus, postpregnancy co-infection phenomenon, number of postpartum plasma exchange sessions, preoperative TT extension, preoperative APTT extension, Cre concentration rise were influencing factors for the hospital stays of AFLP patients. According to the minimum result of Akaike information criterion, the multivariate binary logistic regression analysis (step-wise selection) showed that the number of postpartum plasma exchange sessions, icterus, preoperative APTT extension were the independent risk factor influencing the hospital stays of AFLP patients, and the logistic regression prediction model was established by incorporating the above three factors. Regularization techniques were further employed in linear regression to address and assess overfitting issues. Additionally, the confidence interval for the estimated effect sizes in each model have been acquired by bootstrapping techniques. 【Conclusion】 Preoperative icterus, preoperative APTT extension(APTT>43s)and the number of postpartum plasma exchange sessions were the independent risk factor influencing the hospital stays of AFLP patients and the logistic regression prediction model with high predictive effectiveness was established successfully.
10.The Uptake and Distribution Evidence of Nano-and Microplastics in vivo after a Single High Dose of Oral Exposure
Tao HONG ; Wei SUN ; Yuan DENG ; Da Jian LYU ; Hong Cui JIN ; Long Ying BAI ; Jun NA ; Rui ZHANG ; Yuan GAO ; Wei Guo PAN ; Sen Zuo YANG ; Jun Ling YAN
Biomedical and Environmental Sciences 2024;37(1):31-41
Objective Tissue uptake and distribution of nano-/microplastics was studied at a single high dose by gavage in vivo.Methods Fluorescent microspheres (100 nm, 3 μm, and 10 μm) were given once at a dose of 200 mg/(kg·body weight). The fluorescence intensity (FI) in observed organs was measured using the IVIS Spectrum at 0.5, 1, 2, and 4 h after administration. Histopathology was performed to corroborate these findings.Results In the 100 nm group, the FI of the stomach and small intestine were highest at 0.5 h, and the FI of the large intestine, excrement, lung, kidney, liver, and skeletal muscles were highest at 4 h compared with the control group (P < 0.05). In the 3 μm group, the FI only increased in the lung at 2 h (P < 0.05). In the 10 μm group, the FI increased in the large intestine and excrement at 2 h, and in the kidney at 4 h (P < 0.05). The presence of nano-/microplastics in tissues was further verified by histopathology. The peak time of nanoplastic absorption in blood was confirmed.Conclusion Nanoplastics translocated rapidly to observed organs/tissues through blood circulation;however, only small amounts of MPs could penetrate the organs.

Result Analysis
Print
Save
E-mail