1.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
2.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
3.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
4.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
5.Evaluation of Effect of Tongnaoyin on Blood-brain Barrier Injury in Acute Ischemic Stroke Patients Based on Dynamic Contrast-enhanced Magnetic Resonance Imaging
Yangjingyi XIA ; Shanshan LI ; Li LI ; Xiaogang TANG ; Xintong WANG ; Qing ZHU ; Hui JIANG ; Cuiping YUAN ; Yongkang LIU ; Zhaoyao CHEN ; Wenlei LI ; Yuan ZHU ; Minghua WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):140-146
ObjectiveTo evaluate the effects of Tongnaoyin on the blood-brain barrier status and neurological impairment in acute ischemic stroke (AIS) patients with the syndrome of phlegm-stasis blocking collaterals by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). MethodsA total of 63 patients diagnosed with AIS in the Jiangsu Province Hospital of Chinese Medicine from October 2022 to December 2023 were enrolled in this study. According to random number table method,the patients were assigned into a control group (32 cases) and an observation group (31 cases). The control group received conventional Western medical treatment,and the observation group took 200 mL Tongnaoyin after meals,twice a day from day 2 of admission on the basis of the treatment in the control group. After 7 days of treatment,the patients were examined by DCE-MRI. The baseline data for two groups of patients before treatment were compared. The National Institute of Health Stroke Scale (NIHSS) score and modified Rankin Scale (mRS) score were recorded before treatment and after 90 days of treatment for both groups. The rKtrans,rKep,and rVe values were obtained from the region of interest (ROI) of the infarct zone/mirror area and compared between the two groups. ResultsThere was no significant difference in the NIHSS or mRS score between the two groups before treatment. After 90 days of treatment,the NIHSS and mRS scores declined in both groups,and the observation group had lower scores than the control group (P<0.05). After treatment,the rKtrans and rVe in the observation group were lower than those in the control group (P<0.01). ConclusionCompared with conventional Western medical treatment alone,conventional Western medical treatment combined with Tongnaoyin accelerates the repair of the blood-brain barrier in AIS patients,thereby ameliorating neurological impairment after AIS to improve the prognosis.
6.Genetic Transformation for Medicinal Plants: A Review
Haoxiyu ZHANG ; Longfei LIN ; Yuan YUAN ; Yuling LIU ; Hui LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):323-330
Medicinal plants, with diverse species, high heterozygosity, and special breeding objectives, can be hardly bred with conventional hybridization techniques. Plant genetic transformation is highly selective and can specifically change the traits of plants, serving as an important technical means for the breeding of medicinal plants. The commonly used plant genetic transformation technologies include Agrobacterium-mediated transformation and particle bombardment. Agrobacterium-mediated transformation is the most widely used method, while it is not applicable to all medicinal plants due to the high specificity. Although not specific, particle bombardment is limited in application due to the low conversion efficiency and external force damage to cells and tissue. With the rise and development of nanotechnology, the emerging nanomaterial-mediated transformation has solved the problems of the above two technologies. However, limited by its late development, the mechanism of nanomaterial-mediated introduction of genetic materials into plant cells remains unclear, and thus this technology is rarely used in medicinal plants. This article summarizes the development status of several commonly used or emerging plant genetic transformation technologies such as Agrobacterium-mediated transformation, particle bombardment, and nanomaterial-mediated transformation, as well as their application in different medicinal plants. Furthermore, this article looks forward to the development trend of genetic transformation technologies for plants and their application prospects in medicinal plants and Chinese materia medica resources, aiming to provide new technical ideas for the genetic improvement and germplasm innovation of medicinal plants and inject new impetus into the sustainable development of Chinese materia medica resources.
7.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
8.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
9.Prevalence of depressive symptoms among middle school students in Huzhou City
LIANG Yinyin ; YUAN Rui ; LIU Guangtao ; LI Hui ; FU Yun
Journal of Preventive Medicine 2025;37(6):622-627,631
Objective:
To investigate the detection of depressive symptoms and its influencing factors among middle school students in Huzhou City, so as to provide insights for improving the mental health levels among middle school students.
Methods:
From September to November 2024, a total of 4 729 middle school students from five counties (districts) in Huzhou City were selected through the stratified cluster random sampling method. Demographic information, lifestyle, and school bullying were collected through questionnaire surveys. Depressive symptoms were assessed using the Center for Epidemiological Studies Depression Scale (CES-D). Factors affecting depressive symptoms among middle school students were analyzed using a multivariable logistic regression model.
Results:
A total of 4 729 middle school students were surveyed, including 2 200 boys (46.52%) and 2 529 girls (53.48%). Depressive symptoms were detected in 1 026 students, with a detection rate of 21.70%. Multivariable logistic regression analysis showed that girl (OR=1.960, 95%CI: 1.659-2.317), high school (ordinary high school, OR=1.789, 95%CI: 1.465-2.186; vocational high school, OR=1.581, 95%CI: 1.105-2.263), consumption of sugar-sweetened beverages >0 time/day (<1 time/day, OR=1.363, 95%CI: 1.009-1.841; ≥1 time/day, OR=1.568, 95%CI: 1.098-2.239), fried food intake ≥1 time/day (OR=1.890, 95%CI: 1.291-2.769), skipping breakfast daily (OR=2.178, 95%CI: 1.825-2.599), TV viewing time ≥2 hours/day (OR=1.457, 95%CI: 1.154-1.838), insufficient sleep duration (OR=1.761, 95%CI: 1.422-2.181), smoking (OR=2.798, 95%CI: 1.834-4.269), alcohol consumption (OR=2.282, 95%CI: 1.861-2.798), experiencing school bullying (OR=5.440, 95%CI: 3.148-9.402) and parental physical/verbal abuse (OR=3.954, 95%CI: 3.189-4.902) were associated with a higher risk of depressive symptoms among middle school students. Conversely, the middle school students who engaged in moderate-to-vigorous physical activity ≥3 times/week (OR=0.784, 95%CI: 0.668-0.921) and attended physical education classes ≥3 sessions/week (OR=0.736, 95%CI: 0.613-0.884) were associated with a lower risk of depressive symptoms.
Conclusion
The prevalence of depressive symptoms among middle school students in Huzhou City was lower than national average, and was influenced by dietary habits, physical exercise, sleep duration, smoking, alcohol consumption, and experiencing school bullying.
10.Implications of left atrial volume index in patients with three-vessel coronary disease: A 6.6-year follow-up cohort study
Ru LIU ; Lei SONG ; Ce ZHANG ; Lin JIANG ; Jian TIAN ; Lianjun XU ; Xinxing FENG ; Linyuan WAN ; Xueyan ZHAO ; Ou XU ; Chongjian LI ; Runlin GAO ; Rutai HUI ; Wei ZHAO ; Jinqing YUAN
Chinese Medical Journal 2024;137(4):441-449
Background::Risk assessment and treatment stratification for three-vessel coronary disease (TVD) remain challenging. This study aimed to investigate the prognostic value of left atrial volume index (LAVI) with the Synergy Between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) score II, and its association with the long-term prognosis after three strategies (percutaneous coronary intervention [PCI], coronary artery bypass grafting [CABG], and medical therapy [MT]) in patients with TVD.Methods::This study was a post hoc analysis of a large, prospective cohort of patients with TVD in China, that aimed to determine the long-term outcomes after PCI, CABG, or optimal MT alone. A total of 8943 patients with TVD were consecutively enrolled between 2004 and 2011 at Fuwai Hospital. A total of 7818 patients with available baseline LAVI data were included in the study. Baseline, procedural, and follow-up data were collected. The primary endpoint was major adverse cardiac and cerebrovascular events (MACCE), which was a composite of all-cause death, myocardial infarction (MI), and stroke. Secondary endpoints included all-cause death, cardiac death, MI, revascularization, and stroke. Long-term outcomes were evaluated among LAVI quartile groups. Results::During a median follow-up of 6.6 years, a higher LAVI was strongly associated with increased risk of MACCE (Q3: hazard ratio [HR] 1.20, 95% confidence interval [CI] 1.06-1.37, P = 0.005; Q4: HR 1.85, 95%CI 1.64-2.09, P <0.001), all-cause death (Q3: HR 1.41, 95% CI 1.17-1.69, P <0.001; Q4: HR 2.54, 95%CI 2.16-3.00, P <0.001), and cardiac death (Q3: HR 1.81, 95% CI 1.39-2.37, P <0.001; Q4: HR 3.47, 95%CI 2.71-4.43, P <0.001). Moreover, LAVI significantly improved discrimination and reclassification of the SYNTAX score II. Notably, there was a significant interaction between LAVI quartiles and treatment strategies for MACCE. CABG was associated with lower risk of MACCE than MT alone, regardless of LAVI quartiles. Among patients in the fourth quartile, PCI was associated with significantly increased risk of cardiac death compared with CABG (HR: 5.25, 95% CI: 1.97-14.03, P = 0.001). Conclusions::LAVI is a potential index for risk stratification and therapeutic decision-making in patients with three-vessel coronary disease. CABG is associated with improved long-term outcomes compared with MT alone, regardless of LAVI quartiles. When LAVI is severely elevated, PCI is associated with higher risk of cardiac death than CABG.


Result Analysis
Print
Save
E-mail