1.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
2.Role and mechanism of platelet-derived growth factor BB in repair of growth plate injury
Hongcheng PENG ; Guoxuan PENG ; Anyi LEI ; Yuan LIN ; Hong SUN ; Xu NING ; Xianwen SHANG ; Jin DENG ; Mingzhi HUANG
Chinese Journal of Tissue Engineering Research 2025;29(7):1497-1503
BACKGROUND:In the initial stage of growth plate injury inflammation,platelet-derived growth factor BB promotes the repair of growth plate injury by promoting mesenchymal progenitor cell infiltration,chondrogenesis,osteogenic response,and regulating bone remodeling. OBJECTIVE:To elucidate the action mechanism of platelet-derived growth factor BB after growth plate injury. METHODS:PubMed,VIP,WanFang,and CNKI databases were used as the literature sources.The search terms were"growth plate injury,bone bridge,platelet-derived growth factor BB,repair"in English and Chinese.Finally,66 articles were screened for this review. RESULTS AND CONCLUSION:Growth plate injury experienced early inflammation,vascular reconstruction,fibroossification,structural remodeling and other pathological processes,accompanied by the crosstalk of chondrocytes,vascular endothelial cells,stem cells,osteoblasts,osteoclasts and other cells.Platelet-derived growth factor BB,as an important factor in the early inflammatory response of injury,regulates the injury repair process by mediating a variety of cellular inflammatory responses.Targeting the inflammatory stimulation mediated by platelet-derived growth factor BB may delay the bone bridge formation process by improving the functional activities of osteoclasts,osteoblasts,and chondrocytes,so as to achieve the injury repair of growth plate.Platelet-derived growth factor BB plays an important role in angiogenesis and bone repair tissue formation at the injured site of growth plate and intrachondral bone lengthening function of uninjured growth plate.Inhibition of the coupling effect between angiogenesis initiated by platelet-derived growth factor BB and intrachondral bone formation may achieve the repair of growth plate injury.
3.Advances in application of small-molecule compounds in neuronal reprogramming.
Zi-Wei DAI ; Hong LIU ; Yi-Min YUAN ; Jing-Yi ZHANG ; Shang-Yao QIN ; Zhi-Da SU
Acta Physiologica Sinica 2025;77(1):181-193
Neuronal reprogramming is an innovative technique for converting non-neuronal somatic cells into neurons that can be used to replace lost or damaged neurons, providing a potential effective therapeutic strategy for central nervous system (CNS) injuries or diseases. Transcription factors have been used to induce neuronal reprogramming, while their reprogramming efficiency is relatively low, and the introduction of exogenous genes may result in host gene instability or induce gene mutation. Therefore, their future clinical application may be hindered by these safety concerns. Compared with transcription factors, small-molecule compounds have unique advantages in the field of neuronal reprogramming, which can overcome many limitations of traditional transcription factor-induced neuronal reprogramming. Here, we review the recent progress in the research of small-molecule compound-mediated neuronal reprogramming and its application in CNS regeneration and repair.
Humans
;
Cellular Reprogramming/drug effects*
;
Neurons/cytology*
;
Animals
;
Transcription Factors
;
Small Molecule Libraries/pharmacology*
;
Nerve Regeneration
4.Astragalus Promotes Osteogenic Differentiation of hBMSCs and Alleviates Osteoporosis by Targeting SOX11 Via miR-181d-5p.
Yuan XIAO ; Yong Li SITU ; Ting Ting WANG ; Shang KONG ; Jiang Qi LIU ; Hong NIE
Biomedical and Environmental Sciences 2025;38(10):1287-1301
OBJECTIVE:
This study aimed to investigate the effect of Astragalus (AST) on osteoporosis (OP) and the downstream mechanisms.
METHODS:
Human bone marrow-derived mesenchymal stem cells (hBMSCs) were induced to differentiate into osteogenic cells. After transfection with relevant plasmids, cell proliferation, cell cycle progression, and apoptosis were assessed. Alizarin red staining was used to detect calcium nodules in the cells, alkaline phosphatase (ALP) staining was used to detect ALP activity in the cells, and quantitative reverse transcription-polymerase chain reaction and western blotting were used to determine RUNX2 and Osterix expression levels. An OP rat model was established using ovariectomy and micro-computed tomography scanning. Hematoxylin and eosin staining and Masson's trichrome staining were used to evaluate the pathological conditions of bone tissues, while immunohistochemistry was conducted to detect RUNX2 in bone tissues.
RESULTS:
AST promoted the osteogenic differentiation of BMSCs, reduced miR-181d-5p expression levels, and increased SOX11 expression levels. Restoring miR-181d-5p expression or reducing SOX11 expression levels reversed the effects of AST on the osteogenic differentiation of hBMSCs. miR-181d-5p was found to target SOX11 in hBMSCs. AST improved OP in rats, and miR-181d-5p overexpression or SOX11 inhibition reversed the therapeutic effects of AST on OP in rats.
CONCLUSION
AST promoted the osteogenic differentiation of hBMSCs and alleviated OP by targeting SOX11 via miR-181d-5p.
Osteogenesis/drug effects*
;
Animals
;
MicroRNAs/genetics*
;
Mesenchymal Stem Cells/drug effects*
;
Osteoporosis/drug therapy*
;
Humans
;
Cell Differentiation/drug effects*
;
Astragalus Plant/chemistry*
;
Rats
;
Rats, Sprague-Dawley
;
Female
;
SOXC Transcription Factors/genetics*
;
Plant Extracts/pharmacology*
;
Cells, Cultured
;
Drugs, Chinese Herbal/pharmacology*
5.Mechanism of effect of rosiglitazone on pancreatic cancer in diabetic mice based on impact of PPARy on glucose transport and metabolism
Rui-Ping HU ; Li-Feng SHANG ; He-Jing WANG ; Hong-Xia CHE ; Ming-Liang WANG ; Huan YANG ; Yuan-Yuan JIN ; Fei-Fei ZHANG ; Jian-Ling ZHANG
Chinese Pharmacological Bulletin 2024;40(7):1325-1334
Aim To explore the mechanism of the effect of rosiglitazone(Rsg)on the pancreatic cancer in diabetic mice based on the impact of PPARγ on glu-cose transport and metabolism.Methods A high-fat and high sugar diet combined with STZ was used to construct T2DM model;T2DM mice and normal mice were subcutaneously injected with PANC02 cells to construct a transplanted tumor model.T2DM trans-planted tumor mice and normal transplanted tumor mice were divided into the following groups:Rsg,PPARy inhibitor(PIN-2),rosiglitazone+PPARγ in-hibitor(Rsg+PIN-2),and normal transplanted tumor mice(NDM)and T2DM transplanted tumor mice(DM)were used as control groups,respectively.Tis-sue samples were collected after intervention.Tissue pathological changes were observed by HE staining.The expressions of Ki67 and PCNA proteins were de-tected by immunohistochemistry.Cell apoptosis was detected by TUNEL assay.The expression of PPARγwas detected by immunofluorescence.The expressions of Glucokinase,GLUT2,Nkx6.1,PDX-1RT-PCR were determined by Western blot.Results Rsg could significantly reduce the tumor mass,pathological chan-ges,Ki67 and PCNA expression of transplanted tumors(P<0.05),increase cell apoptosis and the expression of PPARγ,Glucokinase,GLUT2,Nkx6.1,PDX-1 proteins in NDM and DM mice(P<0.05).PIN-2 could reverse the indicator changes caused by Rsg in NDM and DM mice.However,compared with NDM mice,the above related indicators of the DM group mice were more sensitive to Rsg and PIN-2.Conclu-sions Compared to non-diabetic pancreatic cancer,rosiglitazone can more sensitively inhibit the prolifera-tion of pancreatic cancer with T2DM,induce apopto-sis,and reprogram the metabolism of pancreatic cancer with T2DM by activating PPA Rγ and altering the ex-pression of glucose and lipid metabolism genes,there-by exerting an anti-cancer effect.
6.Comparison of platelet-rich plasma and sodium hyaluronate in treatment of rotator cuff injury
Qinggang CAO ; Xiaoyun CAI ; Yinjuan SHANG ; Ziying SUN ; Zhongyang LYU ; Yang QIU ; Tao YUAN ; Hong QIAN ; Jia MENG ; Hui JIANG ; Nirong BAO
Chinese Journal of Orthopaedic Trauma 2023;25(10):872-876
Objective:To compare the clinical effects of platelet-rich plasma (PRP) and sodium hyaluronate on rotator cuff injury.Methods:From February 2022 to December 2022, 226 patients with rotator cuff injury caused by military training were treated at Department of Orthopaedics, Jinling Hospital, School of Medicine, Nanjing University. They were all male, aged (24.5±3.7) years, and their time from injury to treatment was (4.6±2.2) months. They were divided into 2 even groups according to different treatments: an observation group of 113 cases into whose subacromial space PRP was injected, and a control group of 113 cases into whose subacromial space sodium hyaluronate was injected. In both groups, the injection was performed once a week for consecutive 3 weeks. The 2 groups were compared in terms of visual analogue scale (VAS) and Constant-Murley shoulder function scale (CMS) before treatment and 4 and 8 weeks after treatment, and the levels of TNF- α and IL-6 in the shoulder synovial fluid before treatment and 8 weeks after treatment. Results:There was no statistical difference between the 2 groups in general clinical data before treatment, indicating comparability ( P>0.05). At 4 and 8 weeks after treatment, compared with the pre-treatment values, the VAS scores were significantly decreased and the Constant-Murley scores significantly increased in both groups ( P<0.001). At 4 and 8 weeks after treatment, the VAS scores in the observation group (3.1±0.9 and 1.5±0.5) were significantly lower than those in the control group (3.7±0.8 and 2.3±0.6) while the Constant-Murley scores in the observation group (58.6±4.5 and 72.2±4.1) significantly higher than those in the control group (55.2±5.3 and 67.8±5.0) ( P<0.001). At 8 weeks after treatment, the levels of TNF- α and IL-6 in the 2 groups were significantly lower than the levels before treatment ( P<0.001). At 8 weeks after treatment, the levels of TNF- α and IL-6 in the observation group [(2.9±0.9) μg/L and (0.8±0.2) μg/L] were significantly lower than those in the control group [(4.0±0.4) μg/L and (1.1±0.4) μg/L] ( P<0.001). Conclusion:Injection of PRP or sodium hyaluronate can relieve pain and improve shoulder function obviously in patients with rotator cuff injury, but PRP is superior to sodium hyaluronate in the treatment of rotator cuff injury.
7.Influencing factors of negative conversion time of nucleic acid detection in 228 patients infected with Omicron variant of SARS-CoV-2 in Shanghai
YUAN Jia-ying ; WANG Xiang-yun ; LI Xiang ; LI Li ; FANG Yao ; AI Hong-jun ; LI Pan-pan ; SHANG Yan ; CHEN Yuan-jing
China Tropical Medicine 2023;23(4):388-
Abstract: Objective To analyze and compare the effects of different clinical characteristics on the negative conversion time of nucleic acid detection after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant infection, and to provide a scientific basis for the isolation and treatment of coronavirus disease 2019 (COVID-19). Methods The epidemiological and clinical data of 228 mild SARS-CoV-2 Omicron variant infected patients diagnosed in Shanghai were retrospectively collected from April 27, 2022 to June 8, 2022 in Wujiaochang designated Hospital, Yangpu District, Shanghai. The negative conversion time of nucleic acid detection was used as the outcome variable, and the patients were divided into A (≤18 days) and B (>18 days). Univariate and multivariate logistic regression analysis were used to analyze the influencing factors of the negative conversion time of nucleic acid detection. Results The mean nucleic acid conversion time of 228 patients was (18.7±12.1) d, with the median time of 18 (2-46) d. Among them, 120 patients in group A had an average nucleic acid conversion time of (13.2±2.0) d, and 108 cases in group B had an average nucleic acid conversion time of (20.8±1.3) d. Univariate analysis showed that there were no statistically significant differences in the effects of hypertension, coronary heart disease, diabetes, hypokalemia, malignant tumors, neuropsychiatric diseases, chronic digestive diseases on the negative nucleic acid conversion time (P>0.05); however, there were significant differences in the effects of combined cerebrovascular disease, leukopenia, chronic respiratory system diseases and vaccination on the negative nucleic acid conversion time (P<0.05). Further multivariate logistic regression analysis revealed that the combination of chronic respiratory diseases and non-vaccination were significant risk factors for prolongation of negative nucleic acid conversion time (P<0.05). Conclusions The results of this study show that gender, age and whether hypertension, coronary heart disease, diabetes mellitus, hypokalemia, malignant tumor, neuropsychiatric disease and chronic digestive disease have no significant effect on the nucleic acid conversion time, whereas chronic respiratory disease and no vaccination are significantly correlated with the prolongation of nucleic acid conversion time in SARS-CoV-2 Omicron-infected patients.
8.Epidemiological and Clinical Characteristics of Non-neonatal Tetanus Patients in Guangxi, China: An 11-year Retrospective Study (2011-2021).
Yi Wen KANG ; Guo Feng MAI ; Xiao Ling ZHU ; Shang Qin DENG ; Shi Xiong YANG ; Hong Li TENG ; Zong Xiang YUAN ; Chu Ye MO ; Jian Yan LIN ; Li YE ; Hua Min TANG
Biomedical and Environmental Sciences 2023;36(9):880-885
9.Structural and Functional Neural Alterations in Internet Addiction: A Study Protocol for Systematic Review and Meta-Analysis
Jun-Li LIU ; Jing-Ting SUN ; Hui-Lin HU ; Hao-Yuan WANG ; Yun-Xi KANG ; Tian-Qi CHEN ; Zhu-Hong CHEN ; Yu-Xuan SHANG ; Yu-Ting LI ; Bo HU ; Rui LIU
Psychiatry Investigation 2023;20(1):69-74
A growing number of neuroimaging studies have revealed abnormal brain structural and functional alterations in subjects with internet addiction (IA), however, with conflicting conclusions. We plan to conduct a systematic review and meta-analysis on the studies of voxelbased morphometry (VBM) and resting-state functional connectivity (rsFC), to reach a consolidated conclusion and point out the future direction in this field. A comprehensive search of rsFC and VBM studies of IA will be conducted in the PubMed, Cochrane Library, and Web of Science databases to retrieve studies published from the inception dates to August 2021. If the extracted data are feasible, activation likelihood estimation and seed-based d mapping methods will be used to meta-analyze the brain structural and functional changes in IA patients. This study will hopefully reach a consolidated conclusion on the impact of IA on human brain or point out the future direction in this field.
10.Expert consensus on implementation strategy of awake prone positioning for non-intubated patients in China (2023).
Yuanyuan MI ; Zheyi CAI ; Jing LIU ; Fei TIAN ; Liping YANG ; Lei BAO ; Shanbing HOU ; Su GU ; Li LI ; Xueli ZHOU ; Yun XU ; Shumei ZHANG ; Xiaoxia FU ; Xiaodi LI ; Chuansheng LI ; Liang SUN ; Xiaohong ZHANG ; Hong QI ; Shiying YUAN ; Liqun ZHU ; Haiyan HUANG ; You SHANG
Chinese Critical Care Medicine 2023;35(4):337-351
The awake prone position plays an important role in the treatment of hypoxemia and the improvement of respiratory distress symptoms in non-intubated patients. It is widely used in clinical practice because of its simple operation, safety, and economy. To enable clinical medical staff to scientifically and normatively implement prone position for awake patients without intubation, the committees of consensus formulation, guided by evidence-based methodology and Delphi method, conducted literature search, literature quality evaluation and evidence synthesis around seven topics, including indications and contraindications, evaluation, implementation, monitoring and safety management, termination time, complication prevention and health education of awake prone position. After two rounds of expert letter consultation, Expert consensus on implementation strategy of awake prone positioning for non-intubated patients in China (2023) was formulated, and provide guidance for clinical medical staff.
Humans
;
Consensus
;
Prone Position
;
Wakefulness
;
China
;
Dyspnea

Result Analysis
Print
Save
E-mail