1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
3.Inhibition of interferon regulatory factor 4 orchestrates T cell dysfunction, extending mouse cardiac allograft survival.
Wenjia YUAN ; Hedong ZHANG ; Longkai PENG ; Chao CHEN ; Chen FENG ; Zhouqi TANG ; Pengcheng CUI ; Yaguang LI ; Tengfang LI ; Xia QIU ; Yan CUI ; Yinqi ZENG ; Jiadi LUO ; Xubiao XIE ; Yong GUO ; Xin JIANG ; Helong DAI
Chinese Medical Journal 2025;138(10):1202-1212
BACKGROUND:
T cell dysfunction, which includes exhaustion, anergy, and senescence, is a distinct T cell differentiation state that occurs after antigen exposure. Although T cell dysfunction has been a cornerstone of cancer immunotherapy, its potential in transplant research, while not yet as extensively explored, is attracting growing interest. Interferon regulatory factor 4 (IRF4) has been shown to play a pivotal role in inducing T cell dysfunction.
METHODS:
A novel ultra-low-dose combination of Trametinib and Rapamycin, targeting IRF4 inhibition, was employed to investigate T cell proliferation, apoptosis, cytokine secretion, expression of T-cell dysfunction-associated molecules, effects of mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) signaling pathways, and allograft survival in both in vitro and BALB/c to C57BL/6 mouse cardiac transplantation models.
RESULTS:
In vitro , blockade of IRF4 in T cells effectively inhibited T cell proliferation, increased apoptosis, and significantly upregulated the expression of programmed cell death protein 1 (PD-1), Helios, CD160, and cytotoxic T lymphocyte-associated antigen (CTLA-4), markers of T cell dysfunction. Furthermore, it suppressed the secretion of pro-inflammatory cytokines interferon (IFN)-γ and interleukin (IL)-17. Combining ultra-low-dose Trametinib (0.1 mg·kg -1 ·day -1 ) and Rapamycin (0.1 mg·kg -1 ·day -1 ) demonstrably extended graft survival, with 4 out of 5 mice exceeding 100 days post-transplantation. Moreover, analysis of grafts at day 7 confirmed sustained IFN regulatory factor 4 (IRF4) inhibition, enhanced PD-1 expression, and suppressed IFN-γ secretion, reinforcing the in vivo efficacy of this IRF4-targeting approach. The combination of Trametinib and Rapamycin synergistically inhibited the MAPK and mTOR signaling network, leading to a more pronounced suppression of IRF4 expression.
CONCLUSIONS
Targeting IRF4, a key regulator of T cell dysfunction, presents a promising avenue for inducing transplant immune tolerance. In this study, we demonstrate that a novel ultra-low-dose combination of Trametinib and Rapamycin synergistically suppresses the MAPK and mTOR signaling network, leading to profound IRF4 inhibition, promoting allograft acceptance, and offering a potential new therapeutic strategy for improved transplant outcomes. However, further research is necessary to elucidate the underlying pharmacological mechanisms and facilitate translation to clinical practice.
Animals
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Interferon Regulatory Factors/metabolism*
;
Heart Transplantation/methods*
;
T-Lymphocytes/immunology*
;
Sirolimus/therapeutic use*
;
Pyridones/therapeutic use*
;
Graft Survival/drug effects*
;
Pyrimidinones/therapeutic use*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Male
;
Signal Transduction/drug effects*
4.Effect of Acupuncture on Clinical Symptoms of Patients with Intractable Facial Paralysis: A Multicentre, Randomized, Controlled Trial.
Hong-Yu XIE ; Ze-Hua WANG ; Wen-Jing KAN ; Ai-Hong YUAN ; Jun YANG ; Min YE ; Jie SHI ; Zhen LIU ; Hong-Mei TONG ; Bi-Xiang CHA ; Bo LI ; Xu-Wen YUAN ; Chao ZHOU ; Xiao-Jun LIU
Chinese journal of integrative medicine 2025;31(9):773-781
OBJECTIVE:
To evaluate the clinical effect and safety of acupuncture manipulation on treatment of intractable facial paralysis (IFP), and verify the practicality and precision of the Anzhong Facial Paralysis Precision Scale (Eyelid Closure Grading Scale, AFPPS-ECGS).
METHODS:
A multicentre, single-blind, randomized controlled trial was conducted from October 2022 to June 2024. Eighty-nine IFP participants were randomly assigned to an ordinary acupuncture group (OAG, 45 cases) and a characteristic acupuncture group (CAG, 44 cases) using a random number table method. The main acupoints selected included Yangbai (GB 14), Quanliao (SI 18), Yingxiang (LI 20), Shuigou (GV 26), Dicang (ST 4), Chengjiang (CV 24), Taiyang (EX-HN 5), Jiache (ST 6), Fengchi (GB 20), and Hegu (LI 4). The OAG patients received ordinary acupuncture manipulation, while the CAG received characteristic acupuncture manipulation. Both groups received acupuncture treatment 3 times a week, with 10 times per course, lasting for 10 weeks. Facial recovery was assessed at baseline and after the 1st, 2nd and 3rd treatment course by AFPPS-ECGS and the House-Brackmann (H-B) Grading Scale. Infrared thermography technology was used to observe the temperature difference between healthy and affected sides in various facial regions. Adverse events and laboratory test abnormalities were recorded. The correlation between the scores of the two scales was analyzed using Pearson correlation coefficient.
RESULTS:
After the 2nd treatment course, the two groups showed statistically significant differences in AFPPS-ECGS scores (P<0.05), with even greater significance after the 3rd course (P<0.01). Similarly, H-B Grading Scale scores demonstrated significant differences between groups following the 3rd treatment course (P<0.05). Regarding temperature measurements, significant differences in temperatures of frontal and ocular areas were observed after the 2nd course (P<0.05), becoming more pronounced after the 3rd course (P<0.01). Additionally, mouth corner temperature differences reached statistical significance by the 3rd course (P<0.05). No safety-related incidents were observed during the study. Correlation analysis revealed that the AFPPS-ECGS and the H-B Grading Scale were strongly correlated (r=0.86, 0.91, 0.93, and 0.91 at baseline, and after 1st, 2nd, and 3rd treatment course, respectively, all P<0.01).
CONCLUSIONS
Acupuncture is an effective treatment for IFP, and the characteristic acupuncture manipulation enhances the therapeutic effect. The use of the AFPPS-ECGS can more accurately reflect the recovery status of patients with IFP. (Trial registration No. ChiCTR2200065442).
Humans
;
Acupuncture Therapy/methods*
;
Facial Paralysis/therapy*
;
Female
;
Male
;
Middle Aged
;
Adult
;
Treatment Outcome
;
Acupuncture Points
;
Aged
5.Application Study of Enzyme Inhibitors and Their Conformational Optimization in The Treatment of Alzheimer’s Disease
Chao-Yang CHU ; Biao XIAO ; Jiang-Hui SHAN ; Shi-Yu CHEN ; Chu-Xia ZHANG ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Zhi-Cheng LIN ; Kai XIE ; Shu-Jun XU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2024;51(7):1510-1529
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment, and there is a lack of effective drugs to treat AD clinically. Existing medications for the treatment of AD, such as Tacrine, Donepezil, Rivastigmine, and Aducanumab, only serve to delay symptoms and but not cure disease. To add insult to injury, these medications are associated with very serious adverse effects. Therefore, it is urgent to explore effective therapeutic drugs for AD. Recently, studies have shown that a variety of enzyme inhibitors, such as cholinesterase inhibitors, monoamine oxidase (MAO)inhibitors, secretase inhibitors, can ameliorate cholinergic system dysfunction, Aβ production and deposition, Tau protein hyperphosphorylation, oxidative stress damage, and the decline of synaptic plasticity, thereby improving AD symptoms and cognitive function. Some plant extracts from natural sources, such as Umbelliferone, Aaptamine, Medha Plus, have the ability to inhibit cholinesterase activity and act to improve learning and cognition. Isochromanone derivatives incorporating the donepezil pharmacophore bind to the catalytic active site (CAS) and peripheral anionic site (PAS) sites of acetylcholinesterase (AChE), which can inhibit AChE activity and ameliorate cholinergic system disorders. A compound called Rosmarinic acid which is found in the Lamiaceae can inhibit monoamine oxidase, increase monoamine levels in the brain, and reduce Aβ deposition. Compounds obtained by hybridization of coumarin derivatives and hydroxypyridinones can inhibit MAO-B activity and attenuate oxidative stress damage. Quinoline derivatives which inhibit the activation of AChE and MAO-B can reduce Aβ burden and promote learning and memory of mice. The compound derived from the combination of propargyl and tacrine retains the inhibitory capacity of tacrine towards cholinesterase, and also inhibits the activity of MAO by binding to the FAD cofactor of monoamine oxidase. A series of hybrids, obtained by an amide linker of chromone in combine with the benzylpiperidine moieties of donepezil, have a favorable safety profile of both cholinesterase and monoamine oxidase inhibitory activity. Single domain antibodies (such as AAV-VHH) targeted the inhibition of BACE1 can reduce Aβ production and deposition as well as the levels of inflammatory cells, which ultimately improve synaptic plasticity. 3-O-trans-p-coumaroyl maslinic acid from the extract of Ligustrum lucidum can specifically inhibit the activity of γ-secretase, thereby rescuing the long-term potentiation and enhancing synaptic plasticity in APP/PS1 mice. Inhibiting γ-secretase activity which leads to the decline of inflammatory factors (such as IFN-γ, IL-8) not only directly improves the pathology of AD, but also reduces Aβ production. Melatonin reduces the transcriptional expression of GSK-3β mRNA, thereby decreasing the levels of GSK-3β and reducing the phosphorylation induced by GSK-3β. Hydrogen sulfide can inhibitGSK-3β activity via sulfhydration of the Cys218 site of GSK-3β, resulting in the suppression of Tau protein hyperphosphorylation, which ameliorate the motor deficits and cognitive impairment in mice with AD. This article reviews enzyme inhibitors and conformational optimization of enzyme inhibitors targeting the regulation of cholinesterase, monoamine oxidase, secretase, and GSK-3β. We are hoping to provide a comprehensive overview of drug development in the enzyme inhibitors, which may be useful in treating AD.
6.Homoharringtonine promotes heart allograft acceptance by enhancing regulatory T cells induction in a mouse model
Xia QIU ; Hedong ZHANG ; Zhouqi TANG ; Yuxi FAN ; Wenjia YUAN ; Chen FENG ; Chao CHEN ; Pengcheng CUI ; Yan CUI ; Zhongquan QI ; Tengfang LI ; Yuexing ZHU ; Liming XIE ; Fenghua PENG ; Tuo DENG ; Xin JIANG ; Longkai PENG ; Helong DAI
Chinese Medical Journal 2024;137(12):1453-1464
Background::Homoharringtonine (HHT) is an effective anti-inflammatory, anti-viral, and anti-tumor protein synthesis inhibitor that has been applied clinically. Here, we explored the therapeutic effects of HHT in a mouse heart transplant model.Methods::Healthy C57BL/6 mice were used to observe the toxicity of HHT in the liver, kidney, and hematology. A mouse heart transplantation model was constructed, and the potential mechanism of HHT prolonging allograft survival was evaluated using Kaplan–Meier analysis, immunostaining, and bulk RNA sequencing analysis. The HHT-T cell crosstalk was modeled ex vivo to further verify the molecular mechanism of HHT-induced regulatory T cells (Tregs) differentiation. Results::HHT inhibited the activation and proliferation of T cells and promoted their apoptosis ex vivo. Treatment of 0.5 mg/kg HHT for 10 days significantly prolonged the mean graft survival time of the allografts from 7 days to 48 days ( P <0.001) without non-immune toxicity. The allografts had long-term survival after continuous HHT treatment for 28 days. HHT significantly reduced lymphocyte infiltration in the graft, and interferon-γ-secreting CD4 + and CD8 + T cells in the spleen ( P <0.01). HHT significantly increased the number of peripheral Tregs (about 20%, P <0.001) and serum interleukin (IL)-10 levels. HHT downregulated the expression of T cell receptor (TCR) signaling pathway-related genes ( CD4, H2-Eb1, TRAT1, and CD74) and upregulated the expression of IL-10 and transforming growth factor (TGF) -β pathway-related genes and Treg signature genes ( CTLA4, Foxp3, CD74, and ICOS). HHT increased CD4 + Foxp3 + cells and Foxp3 expression ex vivo, and it enhanced the inhibitory function of inducible Tregs. Conclusions::HHT promotes Treg cell differentiation and enhances Treg suppressive function by attenuating the TCR signaling pathway and upregulating the expression of Treg signature genes and IL-10 levels, thereby promoting mouse heart allograft acceptance. These findings may have therapeutic implications for organ transplant recipients, particularly those with viral infections and malignancies, which require a more suitable anti-rejection medication.
7.Three-dimensional finite element analysis of lumbar disc herniation under different body positions
Ben-Jing YIN ; Yu LU ; Fu-Tao JI ; Rong-Neng QIU ; Yuan-Yang XIE ; Ge CHEN ; Tian-Li XU ; Chao-Yu BAO ; Ju-Bao LI
China Journal of Orthopaedics and Traumatology 2024;37(6):599-604
Objective To campare biomechanical effects of different postural compression techniques on three-dimensional model of lumbar disc herniation(LDH)by finite element analysis.Methods Lumbar CT image of a 48-year-old female patient with LDH(heighted 163 cm,weighted 53 kg)was collected.Mimics 20.0,Geomagic Studio,Solidwords and other software were used to establish three-dimensional finite element model of LDH on L4,5 segments.Compression techniques under horizon-tal position,30° forward bending and 10° backward extension were simulated respectively.After applying the pressure,the ef-fects of compression techniques under different positions on stress,strain and displacement of various tissues of intervertebral disc and nerve root were observed.Results L4,5 segment finite element model was successfully established,and the model was validated.When compression manipulation was performed on the horizontal position,30° flexion and 10° extension,the annular stress were 0.732,5.929,1.286 MPa,the nucleus pulposus stress were 0.190,1.527,0.295 MPa,and the annular strain were 0.097,0.922 and 0.424,the strain sizes of nucleus pulposus were 0.153,1.222 and 0.282,respectively.The overall displace-ment distance of intervertebral disc on Y direction were-3.707,-18.990,-4.171 mm,and displacement distance of nerve root on Y direction were+7.836,+5.341,+3.859 mm,respectively.The relative displacement distances of nerve root and interverte-bral disc on Y direction were 11.543,24.331 and 8.030 mm,respectively.Conclusion Compression manipulation could make herniated intervertebral disc produce contraction and retraction trend,by increasing the distance between herniated interverte-bral disc and nerve root,to reduce symptoms of nerve compression,to achieve purpose of treatment for patients with LDH,in which the compression manipulation is more effective when the forward flexion is 30°.
8.Antimicrobial resistance and resistance gene carriage by Salmonella bacteria in environmental sewage in Guangzhou
Bi-Hui SU ; Guang-Hong DU ; Xiao-Ying WU ; Gang HE ; Jun YUAN ; Chao-Jun XIE
Chinese Journal of Zoonoses 2024;40(5):442-447
This study explored the antibiotic resistance and resistance gene carriage of 140 Salmonella strains isolated from environmental sewage in Guangzhou city between March 1,2022,and November 30,2022.The micro broth dilution method was used to select 17 antibiotics for susceptibility testing.According to whole genome sequencing results,the CARD resistance database was used to obtain corresponding resistance genes.High antimicrobial resistance rates above 80%were observed a-gainst ampicillin,tetracycline,streptomycin,chloramphenicol,and cotrimoxazole.The intermediation rate of polymyxin E and ciprofloxacin exceeded 60%.The multiple drug resistance status was severe,and the rate of multiple drug resistance was as high as 92.86%.The strains carried multiple types of resistance genes,particularly for aminoglycosides,with a carriage rate as high as 92.68%.The resistance of Salmonella in environmental wastewater in Guangzhou to one or more drugs was severe,and the overall multi-drug resistance rate gradually increased over time.The resistance spectrum was diverse,and the resistance mechanism,mediated by mobile genetic elements such as re-sistance genes,was found to be the main cause of resistance to one or more drugs.
9.Development of DNA molecular identity cards for germplasm of Murraya paniculata based on SSR markers.
Cheng SUN ; Bo-Cheng WANG ; Zi-Yuan CHEN ; Chao JIANG ; Wen-Bo XIE ; Yuan YUAN
China Journal of Chinese Materia Medica 2024;49(23):6272-6280
To promote the conservation and utilization of the germplasm resources and provide a basis for the breeding of new varieties of Murraya paniculata, this study analyzed the genetic diversity of the germplasm resources and developed the molecular identity(ID) card of M. paniculata. Multiple fluorescence PCR-capillary electrophoresis was performed for 65 germplasm accessions of M. paniculata based on 9 SSR markers identified from the M. paniculata genome, and the molecular weights and alleles of the amplified bands were analyzed. According to the banding patterns of the 9 SSR primers, this study analyzed the genetic diversity of each germplasm accession of M. paniculata and developed molecular ID cards for the test samples. The results showed that 9 pairs of SSR primers detected 78 alleles, with an average of 8.67 alleles. The observed and expected heterozygosity was 0.338-0.831(average of 0.601) and 0.413-0.853(average of 0.721), respectively. The Shannon's information index varied within the range of 0.880-1.994, with an average of 1.41. The polymorphic information content was within the range of 0.391-0.835, with an average of 0.696, which indicated rich genetic diversity. When the genetic identity was 0.347, the 65 germplasm accessions were classified into 5 groups. Based on the results, this study employed the 5 SSR primers with higher polymorphisms to develop the molecular ID cards for the germplasm resources of M. paniculata and created QR code ID cards for the 49 core germplasm accessions preserved in the Yunfu germplasm nursery, laying a foundation for the new variety breeding, production, utilization, and traceability of M. paniculata.
Microsatellite Repeats
;
DNA, Plant/genetics*
;
Murraya/classification*
;
Genetic Variation
;
Alleles
;
Polymerase Chain Reaction
;
Polymorphism, Genetic
10.Antimicrobial resistance of bacteria from pleural and peritoneal effusion:surveillance report from Hunan Provincial Antimicrobial Resistance Sys-tem,2012-2021
Yong-Xue TANG ; Si-Yu WANG ; Xiao-Bing XIE ; Li-Hua CHEN ; Chen-Chao FU ; Chen LI ; Yan-Ming LI ; Jun LIU ; Nan REN ; Guo-Min SHI ; Jing-Min WU ; Huai-De YANG ; Hong-Xia YUAN ; Ming ZHENG ; Xun HUANG ; An-Hua WU ; Xing-Wang NING ; Xi-Mao WEN
Chinese Journal of Infection Control 2023;22(12):1438-1451
Objective To understand the distribution and antimicrobial resistance changes of bacteria isolated from pleural and peritoneal effusion in Hunan Province,and provide reference for correct clinical diagnosis and rational antimicrobial use.Methods Data reported by member units of Hunan Provincial Antimicrobial Resistance Survei-llance System from 2012 to 2021 were collected.Bacteria antimicrobial resistance surveillance method was imple-mented according to technical scheme of China Antimicrobial Resistance Surveillance System(CARSS),and WHO-NET 5.6 software was used to analyze the data of bacteria isolated from pleural and peritoneal effusion as well as antimicrobial susceptibility testing results.Results From 2012 to 2021,a total of 28 934 bacterial strains were iso-lated from specimens of pleural and peritoneal effusions from member units of Hunan Provincial Antimicrobial Re-sistance Surveillance System,with 5 752 strains from pleural effusion and 23 182 from peritoneal effusion.The top five bacteria isolated from pleural effusion were Escherichia coli(n=907,15.8%),Staphylococcus aureus(n=535,9.3%),Klebsiella pneumoniae(n=369,6.4%),Staphylococcus epidermidis(n=452,7.9%),and Staphy-lococcus haemolyticus(n=285,5.0%).The detection rate of methicillin-resistant Staphylococcus aureus(MR-SA)from pleural effusion was 24.3%-39.2%,and that of methicillin-resistant coagulase negative Staphylococcus(MRCNS)was 58.8%-77.1%.The top five bacteria isolated from peritoneal effusion were Escherichia coli(n=8 264,35.6%),Klebsiella pneumoniae(n=2 074,9.0%),Enterococcus faecium(n=1 458,6.3%),Staphylo-coccus epidermidis(n=1 383,6.0%),and Pseudomonas aeruginosa(n=1 152,5.0%).The detection rate of MRSA from peritoneal effusion was 22.1%-52.4%,which presented a decreasing trend(P=0.004).The detec-tion rate of MRCNS was 60.4%-79.4%.The resistance rates of Enterobacterales from peritoneal effusion to ce-fazolin,cefuroxime,ceftriaxone and cefepime all showed decreasing trends(all P<0.05).Vancomycin-,linezo-lid-,and teicoplanin-resistant Staphylococcus strains were not found in pleural and peritoneal effusions.The resis-tance rates of Enterococcus faecium to most tested antimicrobial agents were higher than those of Enterococcus fae-calis.The resistance rates of Enterobacterales to imipenem and meropenem were ≤8.5%.The resistance rates of non-fermentative Gram-negative bacilli to imipenem and meropenem were ≤43.3%.Conclusion The data structure of Hunan Antimicrobial Resistance Surveillance System for pleural and peritoneal effusions from 2012 to 2021 is relatively complete.The constituent and antimicrobial susceptibility of isolated pathogenic bacteria vary in different years.

Result Analysis
Print
Save
E-mail