1.Herbal Textual Research and Modern Research Progress of Ostreae Concha
Hongyi ZHANG ; Bin WANG ; Jiawen LIU ; Yuan HU ; Lin CHEN ; Youping LIU ; Hongping CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):223-234
By consulting relevant literature of ancient herbal books and processing specifications, this paper made a systematic research and analysis of Ostreae Concha, including the name, producing area, harvesting, quality, historical evolution of processing, relevant processing specifications, modern processing technology, and changes in chemical composition and pharmacological effects before and after processing, in order to provide documentary evidence for the research on processing technology and the establishment of quality standards. According to the textual research, it is known that Ostreae Concha has a long history of being used in medicine, and there have been many aliases and local names in each historical period. Shennong's Classic of the Materia Medica(Shennong Bencaojing) began to use Muli as the correct name, which has continued to use to today, and there were also aliases such as Muge, Zuogu Muli and Haoke. Ostreae Concha has a wide range of localities and irregular harvesting periods. The ancients believed that its left shell was of superior quality, but this has not been seen in modern. And there were many kinds of processing methods of Ostreae Concha, such as grinding, roasting, calcining, frying, simmering, quenching and so on, and the calcining was still in use. The different editions of Chinese Pharmacopoeia from 1963 to 2020 contain only calcined Ostreae Concha, and the local processing specifications mainly include three kinds of processed products(calcined products, salt-soaked products and vinegar-soaked products). Modern processing research mainly focuses on process optimization, changes in chemical composition and pharmacological effects, and the research methods are relatively single. Overall, there are currently issues such as inconsistent processing standards, unclear process parameters and imperfect quality standards, which are not conducive to the quality control and standardized clinical use of Ostreae Concha. Therefore, it is necessary to further investigate the pharmacological substance basis of Ostreae Concha and its processed products in order to elucidate the processing mechanism, standardize the processing technology and improve the quality standard.
2.Identification of Alumen and Ammonium alum Based on XRD, FTIR, TG-DTA Combined with Chemometrics
Bin WANG ; Jingwei ZHOU ; Huangsheng ZHANG ; Jian FENG ; Hanxi LI ; Guorong MEI ; Jiaquan JIANG ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU ; Shilin CHEN ; Lin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):178-186
ObjectiveTo establish the multi-technique characteristic profiles of Alumen by X-ray diffraction(XRD), Fourier-transform infrared spectroscopy(FTIR) and thermogravimetric-differential thermal analysis(TG-DTA), and to explore the spectral characteristics for rapid identification of Alumen and its potential adulterant, Ammonium alum. MethodsA total of 27 batches of Alumen samples from 8 production regions were collected for preliminary identification based on visual characteristics. The PDF standard cards of XRD were used to differentiate Alumen from A. alum, and the XRD characteristic profiles of Alumen were established, and then the common peaks were screened. Based on hierarchical clustering analysis(HCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), the characteristic information that could be used for identification of Alumen was selected with variable importance in the projection(VIP) value>1. FTIR characteristic profiles of Alumen were established, and key wavenumbers for identification were screened by HCA and OPLS-DA with VIP value>1. Meanwhile, the thermogravimetric differences between Alumen and A. alum were analyzed by TG-DTA, and the thermogravimetric traits that could be used for identification were screened. ResultsAlumen and A. alum could not be effectively distinguished by traits alone. However, by comparing the PDF standard cards of XRD, 15 batches of Alumen and 12 batches of A. alum could be distinguished. In the XRD profiles, 10 characteristic peaks were confirmed, corresponding to diffraction angles of 14.560°, 24.316°, 12.620°, 32.122°, 17.898°, 34.642°, 27.496°, 46.048°, 40.697° and 21.973°. In the FTIR profiles, 4 wavenumber ranges(399.193-403.050, 1 186.010-1 471.420, 1 801.190-2 620.790, 3 612.020-3 997.710 cm-1) and 12 characteristic wavenumbers(1 428.994, 1 430.922, 1 432.851, 1 434.779, 1 436.708, 1 438.636, 1 440.565, 1 442.493, 1 444.422, 1 446.350, 1 448.279, 1 450.207 cm-1) were identified. In the TG-DTA profiles, there were characteristic decomposition peaks of ammonium ion and mass reduction features near 555.34 ℃ for A. alum. These characteristics could serve as important criteria for distinguishing the authenticity of Alumen. ConclusionXRD, FTIR and TG-DTA can be used to rapidly detect Alumen and A. alum, and combined with the discriminant features selected through chemometrics, the rapid and accurate identification of Alumen and A. alum can be achieved. The research findings provide new approaches for the rapid identification of Alumen.
3.Identification of Alumen and Ammonium alum Based on XRD, FTIR, TG-DTA Combined with Chemometrics
Bin WANG ; Jingwei ZHOU ; Huangsheng ZHANG ; Jian FENG ; Hanxi LI ; Guorong MEI ; Jiaquan JIANG ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU ; Shilin CHEN ; Lin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):178-186
ObjectiveTo establish the multi-technique characteristic profiles of Alumen by X-ray diffraction(XRD), Fourier-transform infrared spectroscopy(FTIR) and thermogravimetric-differential thermal analysis(TG-DTA), and to explore the spectral characteristics for rapid identification of Alumen and its potential adulterant, Ammonium alum. MethodsA total of 27 batches of Alumen samples from 8 production regions were collected for preliminary identification based on visual characteristics. The PDF standard cards of XRD were used to differentiate Alumen from A. alum, and the XRD characteristic profiles of Alumen were established, and then the common peaks were screened. Based on hierarchical clustering analysis(HCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), the characteristic information that could be used for identification of Alumen was selected with variable importance in the projection(VIP) value>1. FTIR characteristic profiles of Alumen were established, and key wavenumbers for identification were screened by HCA and OPLS-DA with VIP value>1. Meanwhile, the thermogravimetric differences between Alumen and A. alum were analyzed by TG-DTA, and the thermogravimetric traits that could be used for identification were screened. ResultsAlumen and A. alum could not be effectively distinguished by traits alone. However, by comparing the PDF standard cards of XRD, 15 batches of Alumen and 12 batches of A. alum could be distinguished. In the XRD profiles, 10 characteristic peaks were confirmed, corresponding to diffraction angles of 14.560°, 24.316°, 12.620°, 32.122°, 17.898°, 34.642°, 27.496°, 46.048°, 40.697° and 21.973°. In the FTIR profiles, 4 wavenumber ranges(399.193-403.050, 1 186.010-1 471.420, 1 801.190-2 620.790, 3 612.020-3 997.710 cm-1) and 12 characteristic wavenumbers(1 428.994, 1 430.922, 1 432.851, 1 434.779, 1 436.708, 1 438.636, 1 440.565, 1 442.493, 1 444.422, 1 446.350, 1 448.279, 1 450.207 cm-1) were identified. In the TG-DTA profiles, there were characteristic decomposition peaks of ammonium ion and mass reduction features near 555.34 ℃ for A. alum. These characteristics could serve as important criteria for distinguishing the authenticity of Alumen. ConclusionXRD, FTIR and TG-DTA can be used to rapidly detect Alumen and A. alum, and combined with the discriminant features selected through chemometrics, the rapid and accurate identification of Alumen and A. alum can be achieved. The research findings provide new approaches for the rapid identification of Alumen.
4.Development status and problems of traditional Chinese medicine seed industry and suggestions for it.
Bao-Juan XUE ; Ying SUN ; Yang ZHAO ; Jun-Shu GE ; Yi WANG ; Zhe-Yuan LIU ; Jiang-Bin LI
China Journal of Chinese Materia Medica 2025;50(4):1132-1136
The inheritance, innovation, and development of traditional Chinese medicine(TCM) need to be based on Chinese medicinal materials. The TCM seed industry is the source of TCM production, which is related to the stable supply and quality safety of TCM. This paper summarizes the basic situation of the TCM seed industry and introduces relevant policies and regulations to TCM seeds in the seed industry and the TCM field. At present, the Management Measures of TCM Seeds and Seedlings has not yet promulgated, and TCM seeds are classified as non-major crops in the category of crops for management. This paper also describes the current situation of TCM seed and seedling system construction, which is in the development stage, from six aspects, including the construction of TCM seed industry technical support system; the establishment of TCM seed standard; the construction of germplasm resource preservation system; TCM seed testing, variety registration, and variety protection; production and management of TCM seeds; TCM seed supervision. According to the development status of the TCM seed industry, four problems are put forward, including imperfect systems and standards relevant to TCM seeds, insufficient supervision and law enforcement regarding TCM seeds, insufficient policy measures and capital investment to promote the development of the industry, and the industry's falling into a low-level cycle.Accordingly, four suggestions are provided, including improving laws, regulations, and policies, perfecting standards and norms,strengthening supervision and law enforcement, and promoting support system construction, in order to boost the high-quality development of the TCM seed industry.
Seeds/chemistry*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/standards*
;
Plants, Medicinal/chemistry*
5.Effect of total secondary ginsenosides on apoptosis and energy metabolism of H9c2 cells under hypoxia based on mitochondrial biogenesis.
Zhong-Jie YUAN ; Yue XIAO ; Zhen LIU ; Ai-Qun ZHANG ; Bin LI ; Shang-Xian GAO
China Journal of Chinese Materia Medica 2025;50(5):1255-1266
This study explores the effect of total secondary ginsenosides(TSG) on apoptosis and energy metabolism in H9c2 cells under hypoxia and its potential mechanisms. H9c2 cell viability was observed and the apoptosis rate was calculated to determine suitable intervention concentrations of TSG, antimycin A complex(AMA), and coenzyme Q10(CoQ10), along with the duration of hypoxia. H9c2 cells at the logarithmic phase were divided into a normal group, a model group, a TSG group, an AMA group, a TSG+AMA group, and a CoQ10 group. All groups, except the normal group, were treated with their respective intervention drugs and cultured under hypoxic conditions. Adenosine triphosphate(ATP) content and creatine kinase(CK) activity were measured using an ATP chemiluminescence assay kit and a CK colorimetric assay kit. Flow cytometry was used to assess apoptosis rates, and Western blot evaluated the expression levels of apoptosis-related proteins, including B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), cysteinyl aspartate-specific protease(caspase)-3, caspase-8, and caspase-9, as well as mitochondrial biogenesis-related proteins peroxisome proliferator-activated receptor-γ coactivator 1α(PGC-1α), estrogen-related receptor-α(ERRα), nuclear respiratory factor(NRF)-1, NRF-2, peroxisome proliferator activated receptor-α(PPARα), and Na~+-K~+-ATPase. RT-PCR was employed to analyze the mRNA expression of mitochondrial biogenesis factors, including PGC-1α, ERRα, NRF-1, NRF-2, PPARα, mitochondrial transcription factor A(TFAM), mitochondrial cytochrome C oxidase 1(COX1), and mitochondrial NADH dehydrogenase subunit 1(ND1), ND2. The selected intervention concentrations were 7.5 μg·mL~(-1) for TSG, 10 μmol·L~(-1) for AMA, and 1×10~(-4) mol·L~(-1) for CoQ10, with a hypoxia duration of 6 h. Compared with the normal group, the model group showed decreased ATP content and CK activity, increased apoptosis rates, decreased Bcl-2 expression, and increased Bax, caspase-3, caspase-8, and caspase-9 expression in H9c2 cells. Additionally, the protein and mRNA expression levels of mitochondrial biogenesis-related factors(PGC-1α, ERRα, NRF-1, NRF-2, PPARα), mRNA expression of TFAM, COX1, and ND1, ND2, and protein expression of Na~+-K~+-ATPase in mitochondrial DNA, were also reduced. In the TSG and CoQ10 groups, ATP content and CK activity increased, and apoptosis rates decreased compared with those in the model group. The TSG group showed decreased protein expression of apoptosis-related proteins Bax, caspase-3, caspase-8, and caspase-9, increased protein and mRNA expression of mitochondrial biogenesis factors PGC-1α, ERRα, NRF-1, and PPARα, and increased NRF-2 protein expression and TFAM mRNA expression in mitochondrial DNA. Conversely, in the AMA group, ATP content and CK activity decreased, the apoptosis rate increased, Bcl-2 expression decreased, and Bax, caspase-3, caspase-8, and caspase-9 expression increased, alongside reductions in PGC-1α, ERRα, NRF-1, NRF-2, PPARα protein and mRNA expression, as well as TFAM, COX1, ND1, ND2 mRNA expression and Na~+-K~+-ATPase protein expression. Compared with the TSG group, the TSG+AMA group exhibited decreased ATP content and CK activity, increased apoptosis rates, decreased Bcl-2 expression, and increased Bax, caspase-3, caspase-8, and caspase-9 expression, along with decreased PGC-1α, ERRα, NRF-1, NRF-2, and PPARα protein and mRNA expression and TFAM, COX1, and ND1, ND2 mRNA expression. Compared with the AMA group, the TSG+AMA group showed increased CK activity, decreased apoptosis rate, increased Bcl-2 expression, and decreased Bax, caspase-8, and caspase-9 expression. Additionally, the protein and mRNA expression of PGC-1α, ERRα, NRF-1, PPARα, mRNA expression of TFAM, COX1, ND1, ND2, and Na~+-K~+-ATPase protein expression increased. In conclusion, TSG enhance ATP content and CK activity and inhibit apoptosis in H9c2 cells under hypoxia, and the mechanisms may be related to the regulation of PGC-1α, ERRα, NRF-1, NRF-2, PPARα, and TFAM expression, thus promoting mitochondrial biogenesis.
Apoptosis/drug effects*
;
Ginsenosides/pharmacology*
;
Energy Metabolism/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Line
;
Cell Hypoxia/drug effects*
;
Organelle Biogenesis
;
Adenosine Triphosphate/metabolism*
;
Humans
;
Cell Survival/drug effects*
6.Phenylpropanoids from roots of Berberis polyantha.
Dong-Mei SHA ; Shuai-Cong NI ; Li-Niu SHA-MA ; Hai-Xiao-Lin-Mo MA ; Xiao-Yong HE ; Bin HE ; Shao-Shan ZHANG ; Ying LI ; Jing WEN ; Yuan LIU ; Xin-Jia YAN
China Journal of Chinese Materia Medica 2025;50(6):1564-1568
The chemical constituents were systematically separated from the roots of Berberis polyantha by various chromatographic methods, including silica gel column chromatography, HP20 column chromatography, polyamide column chromatography, reversed-phase C_(18) column chromatography, and preparative high-performance liquid chromatography. The structures of the compounds were identified by physicochemical properties and spectroscopic techniques(1D NMR, 2D NMR, UV, MS, and CD). Four phenylpropanoids were isolated from the methanol extract of the roots of B. polyantha, and they were identified as(2R)-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone-O-β-D-glucopyranoside(1), methyl 4-hydroxy-3,5-dimethoxybenzoate(2),(+)-syringaresinol(3), and syringaresinol-4-O-β-D-glucopyranoside(4). Compound 1 was a new compound, and other compounds were isolated from this plant for the first time. The anti-inflammatory activity of these compounds was evaluated based on the release of nitric oxide(NO) in the culture of lipopolysaccharide(LPS)-induced RAW264.7 macrophages. At a concentration of 10 μmol·L~(-1), all the four compounds inhibited the LPS-induced release of NO in RAW264.7 cells, demonstrating potential anti-inflammatory properties.
Plant Roots/chemistry*
;
Animals
;
Mice
;
Berberis/chemistry*
;
RAW 264.7 Cells
;
Macrophages/immunology*
;
Drugs, Chinese Herbal/isolation & purification*
;
Nitric Oxide/metabolism*
;
Molecular Structure
;
Anti-Inflammatory Agents/isolation & purification*
7.Innovation and application of traditional Chinese medicine dispensing promoted through integration of whole-process data elements.
Huan-Fei YANG ; Si-Yu LI ; Chen-Qian YU ; Jian-Kun WU ; Fang LIU ; Li-Bin JIANG ; Chun-Jin LI ; Xiang-Fei SU ; Wei-Guo BAI ; Hua-Qiang ZHAI ; Shi-Yuan JIN ; Yong-Yan WANG
China Journal of Chinese Materia Medica 2025;50(11):3189-3196
As a new type of production factor that can empower the development of new quality productivity, the data element is an important engine to promote the high quality development of the industry. Traditional Chinese medicine(TCM) dispensing is the most basic work of TCM clinical pharmacy, and its quality directly affects the clinical efficacy of TCM. The integration of data elements and TCM dispensing can stimulate the innovation and vitality of the TCM dispensing industry and promote the high-quality and sustainable development of the industry. A large-scale, detailed, and systematic study on TCM dispensing was conducted. The innovative practice path of data fusion construction in the whole process of TCM dispensing was investigated by integrating the digital resources "nine full activities" of TCM dispensing, creating the digital dictionary of "TCM clinical information data elements", and exploring innovative applications of TCM dispensing driven by data and technology, so as to promote the standardized, digital, and intelligent development of TCM dispensing in medical health services. The research content of this project was successfully selected as the second batch of "Data element×" typical cases of National Data Administration in 2024, which is the only selected case in the field of TCM.
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal
;
Humans
8.Association between improved erectile function and dietary patterns: a systematic review and meta-analysis.
Bin YANG ; Chao WEI ; Yu-Cong ZHANG ; De-Lin MA ; Jian BAI ; Zhuo LIU ; Xia-Ming LIU ; Ji-Hong LIU ; Xiao-Yi YUAN ; Wei-Min YAO
Asian Journal of Andrology 2025;27(2):239-244
Erectile dysfunction (ED) is prevalent among men, but its relationship with dietary habits is uncertain. The aim of our study was to assess whether dietary patterns enhance erectile function by reviewing the literature published before August 1, 2022, via PubMed, Web of Science, and EMBASE databases. The data compiled included author details; publication dates, countries, treatments, patient numbers, ages, follow-ups, and clinical trial outcomes, such as ED cases, odds ratios (ORs), confidence intervals (CIs), and International Index of Erectile Function-5 (IIEF-5) scores with means and standard deviations. An analysis of 14 studies with 27 389 participants revealed that plant-based diets (OR = 0.71, 95% CI: 0.66-0.75; P < 0.00001), low-fat diets (OR = 0.27, 95% CI: 0.13-0.53; P = 0.0002), and alternative diets such as intermittent fasting and organic diets (OR = 0.54, 95% CI: 0.36-0.80; P = 0.002) significantly reduced ED risk. High-protein low-fat diets (hazard ratio [HR] = 1.38, 95% CI: 1.12-1.64; P < 0.00001) and high-carb low-fat diets (HR = 0.79, 95% CI: 0.55-1.04; P < 0.00001) improved IIEF-5 scores. Combined diet and exercise interventions decreased the likelihood of ED (OR = 0.49, 95% CI: 0.28-0.85; P = 0.01) and increased the IIEF-5 score (OR = 3.40, 95% CI: 1.69-5.11; P < 0.0001). Diets abundant in fruits and vegetables (OR = 0.97, 95% CI: 0.96-0.98; P < 0.00001) and nuts (OR = 0.54, 95% CI: 0.37-0.80; P = 0.002) were also correlated with lower ED risk. Our meta-analysis underscores a strong dietary-ED association, suggesting that low-fat/Mediterranean diets rich in produce and nuts could benefit ED management.
Humans
;
Male
;
Erectile Dysfunction/epidemiology*
;
Diet
;
Diet, Fat-Restricted
;
Feeding Behavior
;
Penile Erection/physiology*
;
Diet, Vegetarian
9.Triclocarban impacts human sperm motility by inhibiting glycolysis and oxidative phosphorylation.
Long-Long FU ; Wei-Zhou WANG ; Yan FENG ; Fu CHEN ; Bin LIU ; Liang HUANG ; Lin-Yuan ZHANG ; Lei CHEN
Asian Journal of Andrology 2025;27(6):707-713
Triclocarban (TCC) is a broad-spectrum antimicrobial widely used in various personal care products, textiles, and children's toys. TCC has potential reproductive and developmental toxicity in animals. However, little is known regarding the effect of TCC on human sperm function. In this study, an in vitro assay was used to investigate the effects of TCC on normal human spermatozoa and the possible underlying mechanisms involved. Semen from healthy male donors was collected and cultured in complete Biggers, Whitten and Whittingham (BWW) and low-sugar BWW media, followed by treatment with TCC at concentrations of 0, 0.1 µmol l -1 , 1 µmol l -1 , 10 µmol l -1 , and 100 µmol l -1 for 4 h. TCC was found to reduce the sperm total motility and progressive motility. Moreover, the sperm kinematic parameters, straight-line velocity (VSL), average path velocity (VAP), and curvilinear velocity (VCL) were affected in a dose-dependent manner. After treatment with TCC at the lowest effective concentration of 10 µmol l -1 , TCC caused a significant decrease in mitochondrial adenosine triphosphate (ATP) production and mitochondrial membrane potential (MMP) and a significant increase in reactive oxygen species (ROS), similar to the observations with the positive control carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), suggesting that TCC may decrease sperm motility by affecting the oxidative phosphorylation (OXPHOS) pathway. In a sugar-free and low-sugar BWW culture environment, TCC enhanced the damaging effect on sperm motility and ATP, MMP, and lactate decreased significantly, suggesting that TCC may also affect the glycolytic pathway that supplies energy to spermatozoa. This study demonstrates a possible mechanism of TCC toxicity in spermatozoa involving both the OXPHOS and glycolysis pathways.
Male
;
Sperm Motility/drug effects*
;
Humans
;
Carbanilides/pharmacology*
;
Oxidative Phosphorylation/drug effects*
;
Glycolysis/drug effects*
;
Membrane Potential, Mitochondrial/drug effects*
;
Adenosine Triphosphate/metabolism*
;
Spermatozoa/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Mitochondria/metabolism*
10.Nanoengineered cargo with targeted in vivo Foxo3 gene editing modulated mitophagy of chondrocytes to alleviate osteoarthritis.
Manyu CHEN ; Yuan LIU ; Quanying LIU ; Siyan DENG ; Yuhan LIU ; Jiehao CHEN ; Yaojia ZHOU ; Xiaolin CUI ; Jie LIANG ; Xingdong ZHANG ; Yujiang FAN ; Qiguang WANG ; Bin SHEN
Acta Pharmaceutica Sinica B 2025;15(1):571-591
Mitochondrial dysfunction in chondrocytes is a key pathogenic factor in osteoarthritis (OA), but directly modulating mitochondria in vivo remains a significant challenge. This study is the first to verify a correlation between mitochondrial dysfunction and the downregulation of the FOXO3 gene in the cartilage of OA patients, highlighting the potential for regulating mitophagy via FOXO3 gene modulation to alleviate OA. Consequently, we developed a chondrocyte-targeting CRISPR/Cas9-based FOXO3 gene-editing tool (FoxO3) and integrated it within a nanoengineered 'truck' (NETT, FoxO3-NETT). This was further encapsulated in injectable hydrogel microspheres (FoxO3-NETT@SMs) to harness the antioxidant properties of sodium alginate and the enhanced lubrication of hybrid exosomes. Collectively, these FoxO3-NETT@SMs successfully activate mitophagy and rebalance mitochondrial function in OA chondrocytes through the Foxo3 gene-modulated PINK1/Parkin pathway. As a result, FoxO3-NETT@SMs stimulate chondrocytes proliferation, migration, and ECM production in vitro, and effectively alleviate OA progression in vivo, demonstrating significant potential for clinical applications.

Result Analysis
Print
Save
E-mail