1.Comparison of SEC-RI-MALLS and SEC-RID methods for determining molecular weight and molecular weight distribution of PLGA
WANG Baocheng ; ZHANG Xiaoyan ; ZHOU Xiaohua ; ZHAO Xun ; MA Congyu ; GAO Zhengsong ; SHI Haiwei ; YUAN Yaozuo ; HANG Taijun
Drug Standards of China 2025;26(1):110-116
Objective: To establish a method for determining the molecular weight and molecular weight distribution of Poly(Lactide-co-Glycolide Acid) (PLGA) using Size Exclusion Chromatography-Refractive Index-Multiangle Laser Light Scattering (SEC-RI-MALLS) and Size Exclusion Chromatography-Refractive Index (SEC-RID), and to compare the results obtained from these two methods.
Methods: For SEC-RI-MALLS, tetrahydrofuran was used as the mobile phase, Shodex GPC KF-803L was employed as the chromatographic column with a flow rate of 1 mL·min-1, column temperature at 30 ℃, and an injection volume of 100 μL. For SEC-RID, tetrahydrofuran was also used as the mobile phase, Agilent PLgel 5 μm MIXD-D was used as the chromatographic column with a flow rate of 1 mL·min-1, column temperature at 30 ℃, differential detector temperature at 35 ℃, and an injection volume of 20 μL. The molecular weight and molecular weight distribution were calculated using Agilent’s GPC software. The newly established methods were validated methodologically, and the molecular weight and molecular weight distribution of 13 batches of samples were determined.
Results: The precision, accuracy, stability, and repeatability tests for SEC-RI-MALLS showed RSD values of 1.35%, 1.58%, 1.53%, and 1.26%, respectively. The SEC-RID method exhibited good linearity (r=0.999 9), with RSD values for precision, accuracy, stability, and repeatability tests (n=6) of 2.05%, 1.62%, 1.30%, and 2.97%, respectively. The results obtained from SEC-RI-MALLS were lower than those from SEC-RID, and the molecular weight distribution coefficient was smaller, but the results from the paired T-test performed with the value measured by SEC-RID method and the value measured by SEC-RI-MALLS method multiplied a conversion coefficient of 1.5 showed no significant difference between the two methods.
Conclusion: Both methods are stable and reliable, and can be used for the determination of PLGA molecular weight and molecular weight distribution based on the specific situations.
2.Anti-CD24 antibody-nitric oxide donor conjugates bearing a self-bioorthogonal cleavable linker.
Jianbing WU ; Tianyue CHENG ; Jiajun XIE ; Ziyu QIAN ; Linhua HUANG ; Xun YUAN ; Libang ZHANG ; Shan YANG ; Yihua ZHANG ; Tonglin XU ; Juan ZHANG ; Zhangjian HUANG
Acta Pharmaceutica Sinica B 2025;15(10):5366-5386
Triple-negative breast cancer (TNBC) is a highly aggressive malignancy predominantly managed via chemotherapy. Our clinical sample analysis revealed a significant correlation between elevated CD24 expression in TNBC tumor cells and patient survival rates. We developed a novel antibody-drug conjugate (ADC), named HN03, consisting of an antibody with engineered cysteines for site-specific conjugation with a low toxic nitric oxide (NO) precursor as its payload through a novel Pt(IV)-mediated bioorthogonal self-cleavable linker. HN03 specifically targets tumor cells expressing high levels of CD24, concurrently generating cisplatin and releasing NO upon activation. HN03 also exhibited potent in vitro and in vivo antitumor activity. It significantly reduced tumor growth at various doses, prevented tumor metastasis, with markedly lower toxicity than traditional chemotherapy agents. We found that a key mechanism of its action involved inducing apoptosis and endoplasmic reticulum stress, substantially decreasing the number of M2-type macrophages. Overall, HN03 stands out as a promising therapeutic option for TNBC, offering a targeted treatment with reduced side effects and the potential for improved outcomes. Furthermore, using Pt(IV) in the linker and an NO precursor as the payload enhances the versatility of the Antibody-NO donor Conjugate (ANC), offering new avenues for the design of the next generation of ADCs.
3.Construction of IgG4 Fc variants and their serum half-lives.
Xun GUO ; Huijun XIE ; Yuan ZHANG
Chinese Journal of Biotechnology 2025;41(8):3143-3154
In this study, we constructed a series of recombinant Fc variants of immunoglobulin G4 (IgG4), screened the fragment crystallizable (Fc) variants with significantly prolonged serum half-lives, and analyzed the relationship between mutation site and half-life, aiming to provide a theoretical basis for the development of IgG4 antibodies and Fc fusion protein-based drugs. Nine gene sites were selected for mutation, and different mutation sites were combined. The variant expression plasmids pET24b-Fc were constructed by molecular cloning and point mutation. The plasmids were transformed into Escherichia coli BL21(DE3) for the expression of different recombinant proteins of Fc. Fc2 and Fc3 variants had slightly lower recombinant protein yields, and the expression of other variants was not affected. The toxicity of different Fc variants was determined by cell counting kit-8 (CCK-8) and calcein acetoxymethyl ester/ propidium iodide (calcein AM/PI) in vitro and enzyme-linked immuno sorbent assay (ELISA) in vivo. The results showed that the recombinant Fc variants had good biocompatibility and safety. Finally, the Fc variants were labeled with fluorescent markers, and the effects of different mutations on their serum half-lives were investigated by in vivo experiments. The Fc5 variant with prolonged serum half-life was successfully screened out, which provided a theoretical and practical basis for the optimal design of IgG4 subtype antibody and Fc fusion protein drugs.
Immunoglobulin G/blood*
;
Immunoglobulin Fc Fragments/biosynthesis*
;
Half-Life
;
Animals
;
Escherichia coli/metabolism*
;
Humans
;
Recombinant Fusion Proteins/biosynthesis*
;
Recombinant Proteins/biosynthesis*
;
Mice
4.Mechanism of salvianolic acid B protecting H9C2 from OGD/R injury based on mitochondrial fission and fusion
Zi-xin LIU ; Gao-jie XIN ; Yue YOU ; Yuan-yuan CHEN ; Jia-ming GAO ; Ling-mei LI ; Hong-xu MENG ; Xiao HAN ; Lei LI ; Ye-hao ZHANG ; Jian-hua FU ; Jian-xun LIU
Acta Pharmaceutica Sinica 2024;59(2):374-381
This study aims to investigate the effect of salvianolic acid B (Sal B), the active ingredient of Salvia miltiorrhiza, on H9C2 cardiomyocytes injured by oxygen and glucose deprivation/reperfusion (OGD/R) through regulating mitochondrial fission and fusion. The process of myocardial ischemia-reperfusion injury was simulated by establishing OGD/R model. The cell proliferation and cytotoxicity detection kit (cell counting kit-8, CCK-8) was used to detect cell viability; the kit method was used to detect intracellular reactive oxygen species (ROS), total glutathione (t-GSH), nitric oxide (NO) content, protein expression levels of mitochondrial fission and fusion, apoptosis-related detection by Western blot. Mitochondrial permeability transition pore (MPTP) detection kit and Hoechst 33342 fluorescence was used to observe the opening level of MPTP, and molecular docking technology was used to determine the molecular target of Sal B. The results showed that relative to control group, OGD/R injury reduced cell viability, increased the content of ROS, decreased the content of t-GSH and NO. Furthermore, OGD/R injury increased the protein expression levels of dynamin-related protein 1 (Drp1), mitofusions 2 (Mfn2), Bcl-2 associated X protein (Bax) and cysteinyl aspartate specific proteinase 3 (caspase 3), and decreased the protein expression levels of Mfn1, increased MPTP opening level. Compared with the OGD/R group, it was observed that Sal B had a protective effect at concentrations ranging from 6.25 to 100 μmol·L-1. Sal B decreased the content of ROS, increased the content of t-GSH and NO, and Western blot showed that Sal B decreased the protein expression levels of Drp1, Mfn2, Bax and caspase 3, increased the protein expression level of Mfn1, and decreased the opening level of MPTP. In summary, Sal B may inhibit the opening of MPTP, reduce cell apoptosis and reduce OGD/R damage in H9C2 cells by regulating the balance of oxidation and anti-oxidation, mitochondrial fission and fusion, thereby providing a scientific basis for the use of Sal B in the treatment of myocardial ischemia reperfusion injury.
5.Preparation and characterization of methacryloylated hyaluronic acid/acellular Wharton's jelly composite hydrogel scaffold
Xun YUAN ; Zhengang DING ; Liwei FU ; Jiang WU ; Yazhe ZHENG ; Zhichao ZHANG ; Guangzhao TIAN ; Xiang SUI ; Shuyun LIU ; Quanyi GUO
Chinese Journal of Tissue Engineering Research 2024;28(22):3517-3523
BACKGROUND:As tissue engineering brings new hope to the worldwide problem of articular cartilage repair,the construction of light-curing 3D printed hydrogel scaffolds with biomimetic composition is of great significance for cartilage tissue engineering. OBJECTIVE:To construct a biomimetic methacryloylated hyaluronic acid/acellular Wharton's jelly composite hydrogel scaffold by digital light processing 3D printing technology,and to evaluate its biocompatibility. METHODS:Wharton's jelly was isolated and extracted from human umbilical cord,then decellulated,freeze-dried,ground into powder,and dissolved in PBS to prepare 50 g/L acellular Wharton's jelly solution.Methylallylated hyaluronic acid was prepared,lyophilized and dissolved in PBS to prepare 50 g/L methylallylated hyaluronic acid solution.Acellular Wharton's jelly solution was mixed with methacrylyacylated hyaluronic acid solution at a volume ratio of 1:1,and was used as bio-ink after adding photoinitiator.Methylacrylylated hyaluronic acid hydrogel scaffolds(labeled as HAMA hydrogel scaffolds)and methylacrylylated hyaluronic acid/acellular Wharton's jelly gel scaffolds(labeled as HAMA/WJ hydrogel scaffolds)were prepared by digital light processing 3D printing technology,and the microstructure,swelling performance,biocompatibility,and cartilage differentiation performance of the scaffolds were characterized. RESULTS AND CONCLUSION:(1)Under scanning electron microscope,the two groups of scaffolds showed a three-dimensional network structure,and the fiber connection of HAMA/WJ hydrogel scaffold was more uniform.Both groups achieved swelling equilibrium within 10 hours,and the equilibrium swelling ratio of HAMA/WJ hydrogel scaffold was lower than that of HAMA hydrogel scaffold(P<0.05).(2)CCK-8 assay showed that HAMA/WJ hydrogel scaffold could promote the proliferation of bone marrow mesenchymal stem cells compared with HAMA hydrogel scaffold.Dead/live staining showed that bone marrow mesenchymal stem cells grew well on the two groups of scaffolds,and the cells on the HAMA/WJ hydrogel scaffolds were evenly distributed and more cells were found.Phalloidine staining showed better adhesion and spread of bone marrow mesenchymal stem cells in HAMA/WJ hydrogel scaffold than in HAMA.(3)Bone marrow mesenchymal stem cells were inoculated into the two groups for chondrogenic induction culture.The results of qRT-PCR showed that the mRNA expressions of agglutinoglycan,SOX9 and type Ⅱ collagen in the HAMA/WJ hydrogel scaffold group were higher than those in the HAMA hydrogel scaffold group(P<0.05,P<0.01).(4)These findings indicate that the digital light processing 3D bioprinting HAMA/WJ hydrogel scaffold can promote the proliferation,adhesion,and chondrogenic differentiation of bone marrow mesenchymal stem cells.
6.Hyperthyroidism Induces Ventricular Remodeling via Activating β-catenin/FoxO1 in Rat Cardiomyocytes
Xun YUAN ; Li BAN ; Songlin TIAN ; Qiulian ZHU ; Guiping ZHANG ; Yuan QIN ; Li PAN ; Ning HOU
Journal of Sun Yat-sen University(Medical Sciences) 2024;45(3):393-411
[Objective]To explore how hyperthyroidism induces ventricular remodeling via activating β-catenin/FoxO1 in rat cardiomyocytes.[Methods]Hyperthyroidism-induced ventricular remodeling rat models were established by intraperitoneal injection of levothyroxine(T4)at 0.1 mg/kg for 30 days.β-catenin inhibitor MSAB(14 mg/kg)was admin-istrated for 30 days.We used western blot to detect the expression of myocardial hypertrophy marker ANP,β-catenin and FoxO1;immunofluorescence to examine the expression and intracellular distribution of β-catenin and FoxO1.Hyperthy-roidism-induced cardiomyocyte hypertrophy rat models were established by treatment of triiodothyronine(T3)into cul-tured primary neonatal rat cardiomyocytes for 24 hours.β-catenin siRNA(30 nmol/L)was used to down-regulate β-catenin expression in cardiomyocytes.Western blot and immunofluorescence were used to analyze the effects of β-catenin inhibition on the hyperthyroidism-induced cardiomyocyte hypertrophy.[Results]Following Wnt/β-catenin activation,β-catenin was found increased nuclear expression,to bind to the nuclear transcriptional factors and regulate the gene ex-pression.β-catenin nuclear expression was significantly increased in the hyperthyroidism-induced ventricular remodeling rats,but no change was found in the expression of typical transcriptional factor TCF7l2.Our results revealed that inhibiting β-catenin by MSAB attenuated the hyperthyroidism-induced rat ventricular remodeling.Further analysis indicated that β-catenin/FoxO1 expression was significantly increased in hyperthyroidism-induced myocardial hypertrophy which could be attenuated by suppressing β-catenin/FoxO1 in cardiomyocytes.[Conclusions]β-catenin/FoxO1 is activated in hyperthy-roidism-induced myocardial hypertrophy and β-catenin/FoxO1 inhibition attenuates hyperthyroidism-induced cardiomyo-cyte hypertrophy.
7.Safety of high-carbohydrate fluid diet 2 h versus overnight fasting before non-emergency endoscopic retrograde cholangiopancreatography: A single-blind, multicenter, randomized controlled trial
Wenbo MENG ; W. Joseph LEUNG ; Zhenyu WANG ; Qiyong LI ; Leida ZHANG ; Kai ZHANG ; Xuefeng WANG ; Meng WANG ; Qi WANG ; Yingmei SHAO ; Jijun ZHANG ; Ping YUE ; Lei ZHANG ; Kexiang ZHU ; Xiaoliang ZHU ; Hui ZHANG ; Senlin HOU ; Kailin CAI ; Hao SUN ; Ping XUE ; Wei LIU ; Haiping WANG ; Li ZHANG ; Songming DING ; Zhiqing YANG ; Ming ZHANG ; Hao WENG ; Qingyuan WU ; Bendong CHEN ; Tiemin JIANG ; Yingkai WANG ; Lichao ZHANG ; Ke WU ; Xue YANG ; Zilong WEN ; Chun LIU ; Long MIAO ; Zhengfeng WANG ; Jiajia LI ; Xiaowen YAN ; Fangzhao WANG ; Lingen ZHANG ; Mingzhen BAI ; Ningning MI ; Xianzhuo ZHANG ; Wence ZHOU ; Jinqiu YUAN ; Azumi SUZUKI ; Kiyohito TANAKA ; Jiankang LIU ; Ula NUR ; Elisabete WEIDERPASS ; Xun LI
Chinese Medical Journal 2024;137(12):1437-1446
Background::Although overnight fasting is recommended prior to endoscopic retrograde cholangiopancreatography (ERCP), the benefits and safety of high-carbohydrate fluid diet (CFD) intake 2 h before ERCP remain unclear. This study aimed to analyze whether high-CFD intake 2 h before ERCP can be safe and accelerate patients’ recovery.Methods::This prospective, multicenter, randomized controlled trial involved 15 tertiary ERCP centers. A total of 1330 patients were randomized into CFD group ( n = 665) and fasting group ( n = 665). The CFD group received 400 mL of maltodextrin orally 2 h before ERCP, while the control group abstained from food/water overnight (>6 h) before ERCP. All ERCP procedures were performed using deep sedation with intravenous propofol. The investigators were blinded but not the patients. The primary outcomes included postoperative fatigue and abdominal pain score, and the secondary outcomes included complications and changes in metabolic indicators. The outcomes were analyzed according to a modified intention-to-treat principle. Results::The post-ERCP fatigue scores were significantly lower at 4 h (4.1 ± 2.6 vs. 4.8 ± 2.8, t = 4.23, P <0.001) and 20 h (2.4 ± 2.1 vs. 3.4 ± 2.4, t= 7.94, P <0.001) in the CFD group, with least-squares mean differences of 0.48 (95% confidence interval [CI]: 0.26–0.71, P <0.001) and 0.76 (95% CI: 0.57–0.95, P <0.001), respectively. The 4-h pain scores (2.1 ± 1.7 vs. 2.2 ± 1.7, t = 2.60, P = 0.009, with a least-squares mean difference of 0.21 [95% CI: 0.05–0.37]) and positive urine ketone levels (7.7% [39/509] vs. 15.4% [82/533], χ2 = 15.13, P <0.001) were lower in the CFD group. The CFD group had significantly less cholangitis (2.1% [13/634] vs. 4.0% [26/658], χ2 = 3.99, P = 0.046) but not pancreatitis (5.5% [35/634] vs. 6.5% [43/658], χ2 = 0.59, P = 0.444). Subgroup analysis revealed that CFD reduced the incidence of complications in patients with native papilla (odds ratio [OR]: 0.61, 95% CI: 0.39–0.95, P = 0.028) in the multivariable models. Conclusion::Ingesting 400 mL of CFD 2 h before ERCP is safe, with a reduction in post-ERCP fatigue, abdominal pain, and cholangitis during recovery.Trail Registration::ClinicalTrials.gov, No. NCT03075280.
8.Moxifloxacin treatment for Mycoplasma hominis meningitis in an extremely preterm infant
Wei-Ying MAO ; Jiang-Er LAN ; Ming-Yu GAN ; Xun-Jie ZHANG ; Hui YU ; Li-Yuan HU ; Rong ZHANG ; Yun CAO ; Mi-Li XIAO
Chinese Journal of Contemporary Pediatrics 2024;26(4):432-436
The patient,a male newborn,was admitted to the hospital 2 hours after birth due to prematurity(gestational age 27+5 weeks)and respiratory distress occurring 2 hours postnatally.After admission,the infant developed fever and elevated C-reactive protein levels.On the fourth day after birth,metagenomic next-generation sequencing of cerebrospinal fluid indicated a positive result for Mycoplasma hominis(9 898 reads).On the eighth day,a retest of cerebrospinal fluid metagenomics confirmed Mycoplasma hominis(56 806 reads).The diagnosis of purulent meningitis caused by Mycoplasma hominis was established,and the antibiotic treatment was switched to moxifloxacin[5 mg/(kg·day)]administered intravenously for a total of 4 weeks.After treatment,the patient's cerebrospinal fluid tests returned to normal,and he was discharged as cured on the 76th day after birth.This article focuses on the diagnosis and treatment of neonatal Mycoplasma hominis purulent meningitis,introducing the multidisciplinary diagnosis and treatment of the condition in extremely preterm infants.[Chinese Journal of Contemporary Pediatrics,2024,26(4):432-436]
9.Discrimination of polysorbate 20 by high-performance liquid chromatography-charged aerosol detection and characterization for components by expanding compound database and library
Wang SHI-QI ; Zhao XUN ; Zhang LI-JUN ; Zhao YUE-MEI ; Chen LEI ; Zhang JIN-LIN ; Wang BAO-CHENG ; Tang SHENG ; Yuan TOM ; Yuan YAOZUO ; Zhang MEI ; Lee Kee HIAN ; Shi HAI-WEI
Journal of Pharmaceutical Analysis 2024;14(5):722-732
Analyzing polysorbate 20(PS20)composition and the impact of each component on stability and safety is crucial due to formulation variations and individual tolerance.The similar structures and polarities of PS20 components make accurate separation,identification,and quantification challenging.In this work,a high-resolution quantitative method was developed using single-dimensional high-performance liquid chromatography(HPLC)with charged aerosol detection(CAD)to separate 18 key components with multiple esters.The separated components were characterized by ultra-high-performance liquid chro-matography-quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS)with an identical gradient as the HPLC-CAD analysis.The polysorbate compound database and library were expanded over 7-time compared to the commercial database.The method investigated differences in PS20 samples from various origins and grades for different dosage forms to evaluate the composition-process relationship.UHPLC-Q-TOF-MS identified 1329 to 1511 compounds in 4 batches of PS20 from different sources.The method observed the impact of 4 degradation conditions on peak components,identifying stable components and their tendencies to change.HPLC-CAD and UHPLC-Q-TOF-MS results provided insights into fingerprint differences,distinguishing quasi products.
10.Mechanism of Tanyu Tongzhi Formula in treatment of atherosclerosis by maintaining vascular homeostasis based on TGF-β signaling pathway.
Xiao-Shan CUI ; Hui-Yu ZHANG ; Yuan-Yuan CHEN ; Liang LI ; Jia-Ming GAO ; Wei HAO ; Cheng-Zhi XIE ; Jian-Xun LIU ; Jian-Hua FU ; Hao GUO
China Journal of Chinese Materia Medica 2024;49(23):6429-6438
This study aimed to investigate the potential mechanism and the compatibility significance of Tanyu Tongzhi Formula in treating atherosclerosis(AS) in mice based on the transforming growth factor-β(TGF-β)/Smad2/3 signaling pathway. Eight C57BL/6J mice were as assigned to a normal control group and fed a regular diet, while 35 ApoE~(-/-) mice of the same strain were fed a high-fat diet for 8 weeks to establish an AS model. The model mice were randomly divided into a model group, a Tanyu Tongzhi group(18.2 mg·kg~(-1)), a Huatan(phlegm-resolving) group(10.4 mg·kg~(-1)), and a Quyu(blood stasis-resolving) group(7.8 mg·kg~(-1)), with 8 mice in each group. Except for the normal group, all other groups continued to be fed a high-fat diet for 8 weeks to maintain the AS model, and then the mice were treated by gavage for 8 weeks. Plasma levels of total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), high-density lipoprotein cholesterol(HDL-C), interleukin-1β(IL-1β), and interleukin-18(IL-18) were measured using enzyme-linked immunosorbent assay(ELISA). Hematoxylin and eosin(HE) staining, oil red O staining, and Russell-Movat pentachrome staining were performed to observe the pathological changes in the aortic tissue. The proportions of aortic plaque area, lipid-stained area, collagen fibers, and elastic fibers were calculated. Immunofluorescence was used to detect the protein expression levels of matrix metalloproteinase 2(MMP2) and tissue inhibitor of metalloproteinases 2(TIMP2). Western blot was used to detect the protein expression levels of TGF-β1, TGF-β2, Smad2/3, and Smad7 in aortic tissue. Real-time fluorescence quantitative PCR(RT-qPCR) was used to measure the mRNA expression levels of TGF-β receptor(TGF-βR), TGF-β1, Smad2/3, Smad7, intercellular adhesion molecule-1(ICAM-1), and vascular cell adhesion molecule-1(VCAM-1) in aortic tissue. The results showed that compared with the normal control group, the model group had increased plasma TC and LDL-C, significantly decreased HDL-C, and significantly elevated plasma IL-1β and IL-18 levels. The model group also exhibited an increased proportion of aortic plaque area, lipid-stained area, and collagen fiber area, along with significantly upregulated MMP2 and downregulated TIMP2 expression in the aortic arch. Additionally, the expression levels of TGF-βR, TGF-β1, and p-Smad2/3 proteins and mRNA in the aortic tissue were significantly elevated, while Smad7 expression was decreased. Compared with the model group, the Tanyu Tongzhi group showed significantly reduced plasma TC and LDL-C levels, significantly increased HDL-C levels, and significantly decreased plasma IL-1β and IL-18 levels. The Tanyu Tongzhi group also exhibited a significant reduction in aortic plaque size and severity, a significant downregulation of MMP2 expression in the aortic arch, and significantly decreased ICAM-1 and VCAM-1 mRNA expression levels. Moreover, the Tanyu Tongzhi group demonstrated significantly reduced expression levels of TGF-β1 and p-Smad2/3 proteins and mRNA in the aortic tissue, and an increased expression level of Smad7 protein to varying degrees. Compared with the Tanyu Tongzhi group, the Quyu group had significantly higher LDL-C levels and elevated plasma IL-1β and IL-18 levels. The Huatan group showed upregulated MMP2 expression and downregulated TIMP2 expression in the aortic arch. In conclusion, Tanyu Tongzhi Formula, which is composed based on the pathogenesis of phlegm and blood stasis, maintains vascular homeostasis by primarily regulating lipid metabolism and controlling inflammatory factors through the Huatan group, and maintaining vascular wall permeability, inhibiting plaque development, and stabilizing plaques through the Quyu group. The mechanism of action may involve inhibiting TGF-β1 expression in the aorta, reducing Smad2/3 phosphorylation, and simultaneously increasing Smad7 expression.
Animals
;
Atherosclerosis/metabolism*
;
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Male
;
Transforming Growth Factor beta/genetics*
;
Humans
;
Homeostasis/drug effects*
;
Aorta/metabolism*
;
Smad2 Protein/genetics*
;
Smad3 Protein/genetics*

Result Analysis
Print
Save
E-mail