1.Establishment and stress analysis of a finite element model for adolescent cervical disc herniation
Yuxin ZHAO ; Liang LIANG ; Feng JIN ; Yangyang XU ; Zhijie KANG ; Yuan FANG ; Yujie HE ; Xing WANG ; Haiyan WANG ; Xiaohe LI
Chinese Journal of Tissue Engineering Research 2025;29(3):448-454
BACKGROUND:Cervical disc herniation can cause pain in the neck and shoulder area,as well as radiating pain in the upper limbs.The incidence rate is increasing year by year and tends to affect younger individuals.Fully understanding the biomechanical characteristics of the cervical spine in adolescents is of great significance for preventing and delaying the onset of cervical disc herniation in this age group. OBJECTIVE:To reconstruct cervical spine models for both healthy adolescents and adolescent patients with cervical disc herniation utilizing finite element analysis techniques,to analyze the motion range of the C1-T1 cervical vertebrae as well as the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and the cartilage of the small joints. METHODS:A normal adolescent's cervical spine and an adolescent patient with cervical disc herniation were selected in this study.The continuous scan cervical spine CT raw image data were imported into Mimics 21.0 in DICOM format.The C1-T1 vertebrae were reconstructed separately.Subsequently,the established models were imported into the 3-Matic software for disc reconstruction.The perfected models were then imported into Hypermesh software for meshing of the vertebrae,nucleus pulposus,annulus fibrosus,and ligaments,creating valid geometric models.After assigning material properties,the final models were imported into ABAQUS software to observe the joint motion range of the C1-C7 cervical vertebrae segments under different conditions,and to analyze the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and small joint cartilage of each cervical spine segment. RESULTS AND CONCLUSION:(1)In six different conditions,the joint motion range of the C1 vertebra in the cervical spine models of both normal adolescent and adolescent patient with cervical disc herniation was higher than that of the other vertebrae.Additionally,the joint motion range of each cervical spine segment in normal adolescent was greater than that in adolescent patient with cervical disc herniation.(2)In the cervical spine model of normal adolescent,the maximum stress values in the annulus fibrosus and nucleus pulposus were found on the left side during C2-3 flexion conditions(0.43 MPa and 0.17 MPa,respectively).In the cervical spine model of adolescent patient with cervical disc herniation,the maximum stress values were found on the left side during C7-T1 flexion conditions(0.54 MPa and 0.18 MPa,respectively).(3)In the cervical spine model of normal adolescent,the maximum stress value on the endplate was found on the left side of the upper endplate of C3 during flexion conditions(1.46 MPa).In the model of adolescent patient with cervical disc herniation,the maximum stress value on the endplate was found on the left side of the lower endplate of C7 during flexion conditions(1.32 MPa).(4)In the cervical spine model of normal adolescent,the maximum stress value in the small joint cartilage was found in the C2-3 left rotation conditions(0.98 MPa).In adolescent patient with cervical disc herniation,the stress in the small joint cartilage significantly increased under different conditions,especially in C1-2,with the maximum stress found during left flexion(3.50 MPa).(5)It is concluded that compared to normal adolescent,adolescent patient with cervical disc herniation exhibits altered cervical curvature and a decrease in overall joint motion range in the cervical spine.In adolescent with cervical disc herniation,there is a significant increase in stress on the annulus fibrosus,nucleus pulposus,and endplates in the C7-T1 segment.The stress on the left articular cartilage of the C1-2 is notable.Abnormal cervical curvature may be the primary factor causing these stress changes.
2.Correlation between brain white matter lesions and insulin resistance in non-diabetic elderly individuals based on magnetic resonance imaging
Mei LI ; Fang YUAN ; Xizi XING ; Feng XIE ; Hua ZHANG
Chinese Journal of Radiological Health 2025;34(1):96-101
Objective To investigate the relationship between brain white matter lesions (WML) and triglyceride glucose (TyG) index in non-diabetic elderly individuals based on magnetic resonance imaging. Methods A total of 523 non-diabetic elderly individuals aged ≥ 60 years were selected from Jinan, Shandong Province, China from June 2018 to December 2019. According to the quartiles of TyG index, there were 133 participants in the first quartile (Q1) group, 127 in the second quartile (Q2) group, 132 in the third quartile (Q3) group, and 131 in the fourth quartile (Q4) group. All participants underwent brain magnetic resonance imaging to evaluate paraventricular, deep, and total WML volumes, as well as Fazekas scores. Results Compared with Q1, Q2, and Q3 groups, Q4 group showed significant increase in periventricular, deep, and total WML volumes (P < 0.05). The proportion of participants with a Fazekas score ≥ 2 in the periventricular, deep, and total WML was higher in the Q4 group compared with the Q1 and Q2 groups (P < 0.05). The proportion of participants with a Fazekas score ≥ 2 in deep WML was higher in Q4 group than in Q3 group (P < 0.05). TyG index was significantly positively correlated with periventricular, deep, and total WML volumes (r = 0.401, 0.405, and 0.445, P < 0.001). After adjusting for confounding factors, TyG index was still significantly positively correlated with periventricular, deep, and total WML volumes (P < 0.001). Logistic regression analysis showed that compared with Q1 group, the risk of Fazekas score ≥ 2 in periventricular WML was 1.950-fold (95% confidence interval [CI]: 1.154-3.294, P = 0.013) in Q3 group and 3.411-fold (95% CI: 1.984-5.863, P < 0.001) in Q4 group, the risk of Fazekas score ≥ 2 in total WML was 2.529-fold (95%CI: 1.444-4.430, P = 0.001) in Q3 group and 4.486-fold (95%CI: 2.314-8.696, P < 0.001) in Q4 group. The risk of Fazekas score ≥ 2 in deep WML was 2.953-fold (95%CI: 1.708-5.106, P < 0.001) in Q4 group compared with Q1 group. Conclusion Increased TyG index is an independent risk factor for WML in non-diabetic elderly individuals.
3.Diagnosis and treatment of pediatric sinusitis based on "the transmission of heat from gallbladder and lung" idea in Huangdi Neijing
Wenqing PAN ; Zhenhua YUAN ; Haolin WANG ; Qiongqiong XING ; Zichao DING ; Yiman DUAN ; Xianqing REN
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):312-317
Sinusitis is a prevalent nasal disease in children, characterized by chronic and difficult-to-treat symptoms. Its onset is related to nasal stagnation, gallbladder and lung dysfunctions. This article explores the root cause based on Huangdi Neijing by considering the physiological and pathological characteristics of children. The core pathogenesis of pediatric sinusitis is the transmission of heat from the gallbladder and lung to the brain and nose, disrupting normal nasal function. Wind and heat pathogens often persist, accumulate, and transform into turbid qi, which are common triggers of the disease. Evil qi retention and yin depletion are internal factors that cause the prolonged and unhealed condition of the disease. This article emphasizes individualized treatment approaches based on disease duration and the severity of pathogenic factors. If external pathogens remain uncleared, treatment should focus on dispelling wind, clearing heat, dispersing with pungent medicinals, and dredging nasal orifices. If internal fire is exuberant, clearing lung qi, inhibiting hyperactive liver yang, and clearing exuberant fire should be used to relieve stagnation. In chronic cases with residual pathogens and liver-kidney yin deficiency, nourishing yin, clearing fire, and moistening the nasal orifices are essential. When exuberant heat has subsided, but the symptom of a persistent runny nose continues, leading to the loss of healthy qi and damage to the lung and spleen, treatments that tonify the spleen, benefit the lung, and reinforce healthy qi should be adopted to relieve stagnation. These treatments aim to restore the balance of the body′s vital qi by addressing both the lingering symptoms and the underlying weakness of the lung and spleen. The diagnosis and treatment of pediatric sinusitis based on the theory of "the transmission of heat from gallbladder and lung" can help reduce the recurrence of sinusitis and alleviate symptoms, with the aim of broadening the approach of traditional Chinese medicine in treating this condition.
4.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
5.Impact of an emotion management course on emotion regulation, coping strategies, and mental health among first-year university students
Yating NIU ; Ming QIAN ; Jinping ZHOU ; Qin YUAN ; Xiaoping XING
Shanghai Journal of Preventive Medicine 2025;37(3):265-270
ObjectiveTo develop an emotion management course and evaluate its effectiveness in improving emotion regulation, coping strategies, and anxiety and depression among first-year university students, so as to provide a basis for colleges to optimize mental health education courses. MethodsUsing a multi-stage cluster random sampling method, five classes of first-year students (n=169) from a university were randomly selected as participants, with three classes assigned to the experimental group (n=102) and two classes to the control group (n=67). The experimental group attended both the standard mental health education course and the emotion management course developed in this study, while the control group only attended the standard mental health education course. Pre- and post-intervention assessments were conducted using the Emotion Regulation Questionnaire (ERQ), Simplified Coping Style Questionnaire (SCSQ), Self-Rating Anxiety Scale (SAS), and Self-Rating Depression Scale (SDS). ResultsBefore the intervention, there were no significant differences between the experimental group and the control group in ERQ, SCSQ, SDS, and SAS scores (P>0.05). After the intervention, the experimental group demonstrated greater improvements than the control group in the ERQ expression inhibition subscale (14.42±5.05, 16.12±5.65), SCSQ positive coping tendency (1.97±0.51, 1.80±0.49) and negative coping tendency (1.26±0.55, 1.47±0.50), as well as in SDS (50.26±11.48, 53.86±8.21) and SAS (43.96±11.97, 47.59±9.50) scores (t value: 2.039, 2.144, 2.572; Z value: -2.214, -2.486; P<0.05). Compared with pre-intervention scores, the experimental group also showed improvements in the ERQ cognitive reappraisal subscale (32.19±5.76, 30.92±6.18), SCSQ positive coping tendency (1.97±0.51, 1.83±0.48), and SDS scores (50.26±11.48, 50.75±11.59) (t value: -2.654, -3.027; Z value: -2.100, P<0.05). ConclusionThe emotion management course effectively enhances students’ use of cognitive reappraisal strategies while reducing reliance on expressive suppression. It also contributes to improvements in coping strategies for life events and alleviates symptoms of depression and anxiety. Universities should consider integrating emotion management education into their curricula to enhance the mental well-being of first-year students.
6.Clinical characteristics and prognostic analysis of transfusion-associated graft-versus-host disease in Chinese population
Xing ZHU ; Yuan ZHUANG ; Yang YU
Chinese Journal of Blood Transfusion 2025;38(9):1212-1217
Objective: To explore the clinical characteristics of transfusion-associated graft-versus-host disease (TA-GVHD) in Chinese population, and to provide reference for effective prevention. Methods: Chinese and English medical databases were searched, and literature was screened based on inclusion and exclusion criteria. Data on patient information, clinical manifestations, outcomes and related risk factors from the selected studies were summarized and systematically analyzed. Results: A total of 17 studies were included in this study, involving 55 non-duplicated patients [14 males (14/55, 25.45%) and 41 females (41/55, 74.55%)], with a mean age of 51.72±18.34 years, (range: 2 months to 82 years). Among these cases, 2 had congenital immune deficiency (2/55, 3.64%), 16 had malignant hematological diseases (16/55, 29.09%), 4 had a history of surgery or trauma (4/55, 7.27%), 2 received non-surgical treatment (2/55, 3.64%), 31 were critically ill patients (31/55, 56.36%). Whole blood was transfused in 3 cases (3/55, 5.45%), erythrocyte in 9 (9/55, 16.36%), plasma in 2 (2/55, 3.64%), platelets in 7(7/55, 12.73%), human fibrinogen in 1 (1/55, 1.82%), and granulocytes in 2 (2/55, 3.64%). Two or more types of blood components were transfused in 16 cases (16/55, 29.09%). The main clinical signs and symptoms included fever (23/55, 41.82%), rash (22/55, 40.00%), diarrhea (14/55, 25.45%), abnormal liver function (18/55, 32.73%), bone marrow suppression and pancytopenia (22/55, 40.00%). The survival rate of 55 patients was 43.64% (24/55), and the mortality was 56.36% (31/55). Logistic regression analysis suggested that gender, misdiagnosis or missed diagnosis were major risk factors for mortality in TA-GVHD patients. Conclusion: The lack of specific indications for TA-GVHD often causes clinical misdiagnosis and missed diagnosis, and current treatments have limited efficacy. Therefore, it is of great significance to standardize clinical diagnosis criteria and improve prevention techniques to reduce the risk and mortality rate of TA-GVHD.
7.Impact of Wenyang lishui formula on ventricular remodeling in rats with pulmonary hypertension-induced right heart failure
Sijian FENG ; Yan HUANG ; Aimin XING ; Mei YUAN ; Yafang LIU ; Weiming WANG
China Pharmacy 2025;36(20):2531-2536
OBJECTIVE To discuss the impact of Wenyang lishui formula on ventricular remodeling in rats with pulmonary hypertension-induced right heart failure (RHF) based on the Hippo/Yes-associated protein (YAP) signaling pathway. METHODS Ten rats were randomly selected as the control group. The remaining 63 rats were given a single intraperitoneal injection of monocrotaline to establish the pulmonary hypertension-induced RHF model. The 50 rats that successfully underwent the model establishment were randomly divided into the RHF group, low-dose group of Wenyang lishui formula (4.25 g/kg), high-dose group of the Wenyang lishui formula (17.00 g/kg), furosemide group (20 mg/kg), and high-dose group of Wenyang lishui formula+ Hippo/YAP signaling pathway activator group (17.00 g/kg of Δ Wenyang lishui formula+16 mg/kg of PY-60), with 10 rats in each group. The rats in each group were given the corresponding drug solution or normal saline by gavage or/andtail vein injection, once a day, for 4 consecutive weeks. During the experiment, the general conditions of the rats in each group were observed; after the last administration, the right ventricular diameter, right atrial diameter, end-diastolic volume, pulmonary artery blood flow acceleration time (PAAT) and its ratio to ejection time (ET) (PAAT/ET), pulmonary artery pressure and its ratio to pulmonary arterial flow velocity (pulmonary artery pressure/velocity) were measured. The plasma levels of brain natriuretic peptide and angiotensin Ⅱ (Ang Ⅱ) were detected. The pathological changes of the right ventricular tissue were observed, and the collagen volume fraction, the phosphorylation levels of the large tumor suppressor 1/2 (LATS1/2) and YAP, and the protein expression of the transcriptional coactivator of PDZ-binding motif (TAZ) were also detected. RESULTS Compared with the RHF group, the rats in Wenyang lishui formula low-dose and high-dose groups showed improved hair color, movement, diet, and mental state. The atrophy of right ventricular myocardial cells, the increase of inflammatory cells, collagen deposition, and hypertrophy of myocardial fibers were significantly alleviated. The right ventricular internal diameter, right atrial internal diameter, end-diastolic volume, pulmonary artery pressure, pulmonary artery pressure/velocity, the plasma levels of brain natriuretic peptide and AngⅡ , collagen volume fraction, the phosphorylation level of YAP and protein expression of TAZ were significantly decreased, while the PAAT, PAAT/ET and the phosphorylation level of LATS1/2 were significantly increased (P<0.05). PY-60 could significantly reverse the improvement effects of high-dose Wenyang lishui formula on the above quantitative indicators (P< 0.05). CONCLUSIONS Wenyang lishui formula can restore the right heart function of pulmonary hypertension-induced RHF rats, reduce their pulmonary artery pressure, alleviate the pathological changes in their cardiac tissues, and the above effects may be related to the activation of Hippo expression and the inhibition of YAP phosphorylation.
8.Application status and research progress of tranexamic acid in the perioperative period of joint replacement and arthroscopic surgery
Bao-Hua YUAN ; Hai-Ping LIU ; Xing-Yong LI ; Xiao-Ting LIU ; Ji-Hai MA ; Xu-Sheng ZHANG ; Hao-Fei YANG ; Jin-Sheng LI ; Sheng-Long HAN
The Chinese Journal of Clinical Pharmacology 2024;40(7):1080-1084
Tranexamic acid is widely used in joint orthopedic surgery.At the same time,it has high safety and few adverse drug reactions.It can effectively improve intraoperative bleeding and promote early functional recovery of patients.This article reviews the mode of administration,safe dose,administration time and adverse drug reactions of tranexamic acid in the perioperative period of joint replacement and arthroscopic surgery,in order to provide reference for the clinical application of tranexamic acid.
9.Research status of quercetin-mediated MAPK signaling pathway in prevention and treatment of osteoporosis
Ke-Xin YUAN ; Xing-Wen XIE ; Ding-Peng LI ; Yi-Sheng JING ; Wei-Wei HUANG ; Xue-Tao WANG ; Hao-Dong YANG ; Wen YAN ; Yong-Wu MA
The Chinese Journal of Clinical Pharmacology 2024;40(9):1375-1379
Quercetin can mediate the activation of mitogen-activated protein kinase(MAPK)signaling pathways to prevent osteoporosis(OP).This paper comprehensively discusses the interrelationship between MAPK and osteoporosis-related cells based on the latest domestic and international research.Additionally,it elucidates the research progress of quercetin in mediating the MAPK signaling pathway for OP prevention.The aim is to provide an effective foundation for the clinical prevention and treatment of OP and the in-depth development of quercetin.
10.Polycystin-2 Ion Channel Function and Pathogenesis in Autosomal Dominant Polycystic Kidney
Kai WANG ; Yuan HUANG ; Ce-Fan ZHOU ; Jing-Feng TANG ; Xing-Zhen CHEN
Progress in Biochemistry and Biophysics 2024;51(1):47-58
Polycystin-2 (also known as PC2, TRPP2, PKD2) is a major contributor to the underlying etiology of autosomal dominant polycystic kidney disease (ADPKD), which is the most prevalent monogenic kidney disease in the world. As a transient receptor potential (TRP) channel protein, PC2 exhibits cation-permeable, Ca2+-dependent channel properties, and plays a crucial role in maintaining normal Ca2+ signaling in systemic physiology, particularly in ADPKD chronic kidney disease. Structurally, PC2 protein consists of six transmembrane structural domains (S1-S6), a polycystin-specific “tetragonal opening for polycystins” (TOP) domain located between the S1 and S2 transmembrane structures, and cytoplasmic N- and C-termini. Although the cytoplasmic N-terminus and C-terminus of PC2 may not be significant in the gating of PC2 channels, there is still much protein structural information that needs to be thoroughly investigated, including the regulation of channel function and the assembly of homotetrameric ion channels. This is further supported by the presence of human disease-associated mutation sites on the PC2 structure. Moreover, PC2 synthesized in the endoplasmic reticulum is enriched in specific subcellular localization via membrane transport and can assemble itself into homotetrameric ion channels, as well as form heterotrimeric receptor-ion channel complexes with other proteins. These complexes are involved in a wide range of physiological functions, including the regulation of mechanosensation, cell polarity, cell proliferation, and apoptosis. In particular, PC2 assembles with chaperone proteins to form polycystic protein complexes that affect Ca2+ transport in cell membranes, cilia, endoplasmic reticulum, and mitochondria, and are involved in activating cell fate-related signaling pathways, particularly cell differentiation, proliferation, survival, and apoptosis, and more recently, autophagy. This leads to a shift of cystic cells from a normal uptake, quiescent state to a pathologically secreted, proliferative state. In conclusion, the complex structural and functional roles of PC2 highlight its critical importance in the pathogenesis of ADPKD, making it a promising target for therapeutic intervention.


Result Analysis
Print
Save
E-mail