1.Study on the evaluation index system for cough and wheeze pharmacist competency training based on the layered learning practice model
Yuan LI ; Xian YANG ; Simin YAN ; Li LI
China Pharmacy 2025;36(11):1389-1393
OBJECTIVE To develop the quality evaluation standard indicator system for hospital cough and wheeze pharmaceutical care clinic (CWPC) pharmacist training within the layered learning practice model (LLPM), and apply it in clinical practice. METHODS Our teaching team established an LLPM model to train cough and wheeze pharmacists, according to the actual conditions of our college. Using qualitative interview methods, expert questionnaires were compiled with literature research; the expert correspondence methods were employed to conduct two rounds of consultation with 10 domestic respiratory medicine experts, thus constructing an evaluation index system for the teaching quality of cough and wheeze pharmacists. The experts’ positive coefficient, authority coefficient, Kendall’s harmony coefficient, and the degree of concentration of opinions were calculated. The analytic hierarchy process (AHP) was used to determine the weight of each indicator within the index system. From June 2023 to June 2024, the teaching team enrolled 21 pharmacists in the training program. The teaching team assessed and scored the trial group (LLPM) and control group (traditional teaching model) based on the benefit indicators for pharmacists and patients in the evaluation index system, and compared the results. RESULTS This study explored the establishment of a training system for cough and wheeze pharmacists under the LLPM model, and initially established an evaluation index system using the Delphi method. In two rounds of Delphi method questionnaires, the recovery rate was 100%, with an authority coefficient exceeding 0.8, Kendall’s harmony coefficient ranging from 0.235 to 0.459, and all P-values being less than 0.05. Four primary (comprising trainee feedback, learning gains, behavioral improvements, and training performance), 12 secondary and 33 tertiary indicators were finalized. In the empirical evaluation, the results of the two groups showed a significant benefit to the pharmacists in the trial group. Specifically, the percentage of patients receiving corticosteroids for COPD or wheeze service patients per month (80.5%), an average increase in the number of cough and wheeze team service outpatient visits per month (compared to the same period of the previous year) of 14.8 visits per month, and the patient satisfaction score (4.9) were all significantly higher than those in the control group (P<0.05). CONCLUSIONS The application of the LLPM in competency training for pharmacists specializing in cough and wheeze care yields multiple benefits and holds significant guiding value. The constructed training quality evaluation index system under this model is scientific and reliable.
2.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.
3.Chemical composition and efficacy of warming lung and resolving fluid retention of Asarum forbesii grown under different shading conditions.
Lu LIAO ; Li-Xian LU ; Hong-Zhuan SHI ; Qiao-Sheng GUO ; Cheng-Hao FEI ; Kun ZHAO ; Yuan-Yuan XING ; Yong SU ; Chang LIU ; Xin-Yue YUAN
China Journal of Chinese Materia Medica 2025;50(2):384-394
Asarum forbesii is a perennial herb born in a shaded and humid environment, which is warm in nature. With the efficacy of warming lung, resolving fluid retention, and relieving coughs, it can be used to treat the syndrome of cold fluid accumulating in lung. To investigate the effects of different shading conditions on the composition and efficacy of A. forbesii, this study planted A. forbesii under 20% natural light(NL20), 40% natural light(NL40), 60% natural light(NL60), and 80% natural light(NL80) and utilized ultra performance liquid chromatography(UPLC) and micro broth 2-fold dilution method to detect the volatile chemical compounds and the minimum inhibitory concentration. At the same time, the study investigated the effects of A. forbesii grown under different shading conditions on the signs, pathological changes of lung tissues, serum cytokine levels, activities of mitochondrial respiratory chain complexes Ⅰ-Ⅴ in lung tissues, and relative expression of related genes of mice with syndrome of cold fluid accumulating in lung. The results indicated that with the increase of shading, the content of kakuol, methyl eugenol, and asarinin in A. forbesii and the antibacterial effect showed a tendency of increasing first and then decreasing, and the NL40 group was significantly better than the other groups. Under the conditions of NL20 and NL40, A. forbesii significantly alleviated the pathological damage to lung tissues, restored the homeostasis of the lung, and enhanced the energy metabolism level of mice with syndrome of cold fluid accumulating in lung. In addition, A. forbesii planted under the two conditions reduced the content of interleukin-8(IL-8), interleukin-13(IL-13), tumor necrosis factor-α(TNF-α), and mucin 5AC(MUC5AC), increased the levels of interleukin-10(IL-10) and aquaporin 1(AQP1), lowered the expression of MMP9, VEGF, TGF-β, and MAPK3. In conclusion, the therapeutic effect of A. forbesii on the syndrome of cold fluid accumulating in lung was positively correlated with the degree of shading, and the chemical composition and efficacy of warming lung and resolving fluid retention were optimal under the conditions of NL20-NL40. This study can provide reference for the pharmacological research and cultivation of A. forbesii.
Animals
;
Mice
;
Lung/pathology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Light
;
Cytokines/genetics*
;
Humans
4.Prediction of quality markers for cough-relieving and phlegm-expelling effects of Kening Granules based on plasma pharmacology combined with network pharmacology and pharmacokinetics.
Qing-Qing CHEN ; Yuan-Xian ZHANG ; Qian WANG ; Jin-Ling ZHANG ; Lin ZHENG ; Yong HUANG ; Yang JIN ; Zi-Peng GONG ; Yue-Ting LI
China Journal of Chinese Materia Medica 2025;50(4):959-973
This study predicts the quality markers(Q-markers) for the cough-relieving and phlegm-expelling effects of Kening Granules based on pharmacodynamics, plasma drug chemistry, network pharmacology, and pharmacokinetics. Strong ammonia solution spray and phenol red secretion assays were employed to evaluate the cough-relieving and phlegm-expelling effects of Kening Granules. Twentysix absorbed prototype components of Kening Granules were identified by ultra high performance liquid chromatography coupled with QExactive Plus quadrupole/Orbitrap high resolution mass spectrometry(UHPLC-Q-Exactive Plus Orbitrap HRMS). Through network pharmacology, 11 potential active components were screened out for the cough-relieving and phlegm-expelling effects of Kening Granules. The 11 components acted on 40 common targets such as IL6, TLR4, and STAT3, which mainly participated in PI3K/Akt, HIF-1, and EGFR signaling pathways. Pharmacokinetic quantitative analysis was performed for 7 prototype components. Three compounds including azelaic acid, caffeic acid, and vanillin were identified as Q-markers for the cough-relieving and phlegm-expelling effects of Kening Granules based on their effectiveness, transmissibility, and measurability. The results of this study are of great significance for clarifying the pharmacological substance basis, optimizing the quality standards, and promoting the clinical application of Kening Granules.
Drugs, Chinese Herbal/administration & dosage*
;
Network Pharmacology
;
Cough/blood*
;
Male
;
Humans
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Biomarkers/blood*
;
Quality Control
;
Chromatography, High Pressure Liquid
;
Antitussive Agents/chemistry*
5.Medication rules of Astragali Radix in ancient Chinese medical books based on "disease-medicine-dose" pattern.
Jia-Lei CAO ; Lü-Yuan LIANG ; Yi-Hang LIU ; Zi-Ming XU ; Xuan WANG ; Wen-Xi WEI ; He-Jia WAN ; Xing-Hang LYU ; Wei-Xiao LI ; Yu-Xin ZHANG ; Bing-Qi WEI ; Xian-Qing REN
China Journal of Chinese Materia Medica 2025;50(3):798-811
This study employed the "disease-medicine-dose" pattern to mine the medication rules of traditional Chinese medicine(TCM) prescriptions containing Astragali Radix in ancient Chinese medical books, aiming to provide a scientific basis for the clinical application of Astragali Radix and the development of new medicines. The TCM prescriptions containing Astragali Radix were retrieved from databases such as Chinese Medical Dictionary and imported into Excel 2020 to construct the prescription library. Statical analysis were performed for the prescriptions regarding the indications, syndromes, medicine use frequency, herb effects, nature and taste, meridian tropism, dosage forms, and dose. SPSS statistics 26.0 and IBM SPSS Modeler 18.0 were used for association rules analysis and cluster analysis. A total of 2 297 prescriptions containing Astragali Radix were collected, involving 233 indications, among which sore and ulcer, consumptive disease, sweating disorder, and apoplexy had high frequency(>25), and their syndromes were mainly Qi and blood deficiency, Qi and blood deficiency, Yin and Yang deficiency, and Qi deficiency and collateral obstruction, respectively. In the prescriptions, 98 medicines were used with the frequency >25 and they mainly included Qi-tonifying medicines and blood-tonifying medicines. Glycyrrhizae Radix et Rhizoma, Angelicae Sinensis Radix, Ginseng Radix et Rhizoma, Atractylodis Macrocephalae Rhizoma, and Citri Reticulatae Pericarpium were frequently used. The medicines with high frequency mainly have warm or cold nature, and sweet, pungent, or bitter taste, with tropism to spleen, lung, heart, liver, and kidney meridians. In the treatment of sore and ulcer, Astragali Radix was mainly used with the dose of 3.73 g and combined with Glycyrrhizae Radix et Rhizoma to promote granulation and heal up sores. In the treatment of consumptive disease, Astragali Radix was mainly used with the dose of 37.30 g and combined with Ginseng Radix et Rhizoma to tonify deficiency and replenish Qi. In the treatment of sweating disorder, Astragali Radix was mainly used with the dose of 3.73 g and combined with Glycyrrhizae Radix et Rhizoma to consolidate exterior and stop sweating. In the treatment of apoplexy, Astragali Radix was mainly used with the dose of 7.46 g and combined with Glycyrrhizae Radix et Rhizoma to dispell wind and stop convulsions. Astragali Radix can be used in the treatment of multiple system diseases, with the effects of tonifying Qi and ascending Yang, consolidating exterior and stopping sweating, and expressing toxin and promoting granulation. According to the manifestations of different diseases, when combined with other medicines, Astragali Radix was endowed with the effects of promoting granulation and healing up sores, tonifying deficiency and Qi, consolidating exterior and stopping sweating, and dispelling wind and replenishing Qi. The findings provide a theoretical reference and a scientific basis for the clinical application of Astragali Radix and the development of new medicines.
Drugs, Chinese Herbal/history*
;
Humans
;
Medicine, Chinese Traditional/history*
;
History, Ancient
;
Astragalus Plant/chemistry*
;
China
;
Astragalus propinquus
6.Effect of total secondary ginsenosides on apoptosis and energy metabolism of H9c2 cells under hypoxia based on mitochondrial biogenesis.
Zhong-Jie YUAN ; Yue XIAO ; Zhen LIU ; Ai-Qun ZHANG ; Bin LI ; Shang-Xian GAO
China Journal of Chinese Materia Medica 2025;50(5):1255-1266
This study explores the effect of total secondary ginsenosides(TSG) on apoptosis and energy metabolism in H9c2 cells under hypoxia and its potential mechanisms. H9c2 cell viability was observed and the apoptosis rate was calculated to determine suitable intervention concentrations of TSG, antimycin A complex(AMA), and coenzyme Q10(CoQ10), along with the duration of hypoxia. H9c2 cells at the logarithmic phase were divided into a normal group, a model group, a TSG group, an AMA group, a TSG+AMA group, and a CoQ10 group. All groups, except the normal group, were treated with their respective intervention drugs and cultured under hypoxic conditions. Adenosine triphosphate(ATP) content and creatine kinase(CK) activity were measured using an ATP chemiluminescence assay kit and a CK colorimetric assay kit. Flow cytometry was used to assess apoptosis rates, and Western blot evaluated the expression levels of apoptosis-related proteins, including B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), cysteinyl aspartate-specific protease(caspase)-3, caspase-8, and caspase-9, as well as mitochondrial biogenesis-related proteins peroxisome proliferator-activated receptor-γ coactivator 1α(PGC-1α), estrogen-related receptor-α(ERRα), nuclear respiratory factor(NRF)-1, NRF-2, peroxisome proliferator activated receptor-α(PPARα), and Na~+-K~+-ATPase. RT-PCR was employed to analyze the mRNA expression of mitochondrial biogenesis factors, including PGC-1α, ERRα, NRF-1, NRF-2, PPARα, mitochondrial transcription factor A(TFAM), mitochondrial cytochrome C oxidase 1(COX1), and mitochondrial NADH dehydrogenase subunit 1(ND1), ND2. The selected intervention concentrations were 7.5 μg·mL~(-1) for TSG, 10 μmol·L~(-1) for AMA, and 1×10~(-4) mol·L~(-1) for CoQ10, with a hypoxia duration of 6 h. Compared with the normal group, the model group showed decreased ATP content and CK activity, increased apoptosis rates, decreased Bcl-2 expression, and increased Bax, caspase-3, caspase-8, and caspase-9 expression in H9c2 cells. Additionally, the protein and mRNA expression levels of mitochondrial biogenesis-related factors(PGC-1α, ERRα, NRF-1, NRF-2, PPARα), mRNA expression of TFAM, COX1, and ND1, ND2, and protein expression of Na~+-K~+-ATPase in mitochondrial DNA, were also reduced. In the TSG and CoQ10 groups, ATP content and CK activity increased, and apoptosis rates decreased compared with those in the model group. The TSG group showed decreased protein expression of apoptosis-related proteins Bax, caspase-3, caspase-8, and caspase-9, increased protein and mRNA expression of mitochondrial biogenesis factors PGC-1α, ERRα, NRF-1, and PPARα, and increased NRF-2 protein expression and TFAM mRNA expression in mitochondrial DNA. Conversely, in the AMA group, ATP content and CK activity decreased, the apoptosis rate increased, Bcl-2 expression decreased, and Bax, caspase-3, caspase-8, and caspase-9 expression increased, alongside reductions in PGC-1α, ERRα, NRF-1, NRF-2, PPARα protein and mRNA expression, as well as TFAM, COX1, ND1, ND2 mRNA expression and Na~+-K~+-ATPase protein expression. Compared with the TSG group, the TSG+AMA group exhibited decreased ATP content and CK activity, increased apoptosis rates, decreased Bcl-2 expression, and increased Bax, caspase-3, caspase-8, and caspase-9 expression, along with decreased PGC-1α, ERRα, NRF-1, NRF-2, and PPARα protein and mRNA expression and TFAM, COX1, and ND1, ND2 mRNA expression. Compared with the AMA group, the TSG+AMA group showed increased CK activity, decreased apoptosis rate, increased Bcl-2 expression, and decreased Bax, caspase-8, and caspase-9 expression. Additionally, the protein and mRNA expression of PGC-1α, ERRα, NRF-1, PPARα, mRNA expression of TFAM, COX1, ND1, ND2, and Na~+-K~+-ATPase protein expression increased. In conclusion, TSG enhance ATP content and CK activity and inhibit apoptosis in H9c2 cells under hypoxia, and the mechanisms may be related to the regulation of PGC-1α, ERRα, NRF-1, NRF-2, PPARα, and TFAM expression, thus promoting mitochondrial biogenesis.
Apoptosis/drug effects*
;
Ginsenosides/pharmacology*
;
Energy Metabolism/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Line
;
Cell Hypoxia/drug effects*
;
Organelle Biogenesis
;
Adenosine Triphosphate/metabolism*
;
Humans
;
Cell Survival/drug effects*
7.Peripheral platelet count is a diagnostic marker for predicting the risk of rapid ejaculation: findings from a pilot study in rats.
Yuan-Yuan HUANG ; Nan YE ; Dang-Wei PENG ; Guang-Yuan LI ; Xian-Sheng ZHANG
Asian Journal of Andrology 2025;27(1):129-134
Parameters of peripheral blood cell have been shown as the potential predictors of erectile dysfunction (ED). To investigate the clinical significance of hematological parameters for predicting the risk of rapid ejaculation, we established a rat copulatory model on the basis of ejaculation distribution theory. Blood samples from different ejaculatory groups were collected for peripheral blood cell counts and serum serotonin (5-HT) tests. Meanwhile, the relationship between hematological parameters and ejaculatory behaviors was assessed. Final analysis included 11 rapid ejaculators, 10 normal ejaculators, and 10 sluggish ejaculators whose complete data were available. The platelet (PLT) count in rapid ejaculators was significantly lower than that in normal and sluggish ejaculators, whereas the platelet distribution width (PDW) and mean platelet volume (MPV) were significantly greater in rapid ejaculators. Multivariate logistic regression analysis and receiver operating characteristic (ROC) curve analysis showed that the PLT was an independent protective factor for rapid ejaculation. Meanwhile, rapid ejaculators were found to have the lowest serum 5-HT compared to normal and sluggish ejaculators ( P < 0.001). Furthermore, there was a positive correlation between the PLT and serum 5-HT ( r = 0.662, P < 0.001), indicating that the PLT could indirectly reflect the serum 5-HT concentration. In addition, we assessed the association between the PLT and ejaculatory parameters. There was a negative correlation between ejaculation frequency (EF) and the PLT ( r = -0.595, P < 0.001), whereas there was a positive correlation between ejaculation latency (EL) and the PLT ( r = 0.740, P < 0.001). This study indicated that the PLT might be a useful and convenient diagnostic marker for predicting the risk of rapid ejaculation.
Male
;
Animals
;
Ejaculation/physiology*
;
Rats
;
Platelet Count
;
Pilot Projects
;
Serotonin/blood*
;
Biomarkers/blood*
;
Mean Platelet Volume
;
Rats, Sprague-Dawley
;
ROC Curve
;
Erectile Dysfunction/physiopathology*
8.Role and mechanism of copper overload-mediated endoplasmic reticulum stress in vascular endothelial injury in Kawasaki disease.
Shi-Fang WEN ; Zhi-Yuan TANG ; Xian-Juan SHEN ; Tao CHEN ; Jian-Mei ZHAO
Chinese Journal of Contemporary Pediatrics 2025;27(7):842-849
OBJECTIVES:
To investigate the role and mechanism of copper overload-mediated endoplasmic reticulum stress (ERS) in vascular endothelial injury in Kawasaki disease (KD).
METHODS:
Four-week-old male C57BL/6 mice were randomly divided into four groups: control, KD, KD plus copper chelator tetrathiomolybdate (TTM), and KD plus ERS inhibitor AMG PERK 44 (AMG) (n=20 per group). A KD mouse model was established using Candida albicans extract. Human umbilical vein endothelial cells (HUVECs) were divided into control (intervention with healthy children's serum), KD (intervention with KD patients' serum), and KD+TTM (intervention with KD patients' serum plus 20 µmol/L TTM). Copper deposition in mouse heart tissue was assessed using rubeanic acid staining. Vascular pathological changes were observed using hematoxylin-eosin staining and measurement of abdominal aortic diameter and area. ERS activation was detected by transmission electron microscopy and immunofluorescence. HUVEC viability, apoptosis, and functional changes were evaluated using CCK8, flow cytometry, cell scratch assay, and angiogenesis experiments. ERS marker protein expression levels were measured by Western blot.
RESULTS:
Compared to the KD group, the KD+TTM and KD+AMG groups showed reduced copper deposition in the vascular wall, decreased swelling of coronary endothelial cells and endoplasmic reticulum, reduced inflammatory cell infiltration, and less abdominal aortic lesion expansion. The abdominal aortic diameter and area, and the fluorescence intensity of ERS marker proteins (GRP78 and CHOP) were significantly lower (P<0.05). Compared to the KD group, the KD+TTM group exhibited increased cell viability, tube number, and scratch healing rate, along with decreased apoptosis rate and expression of ERS marker proteins (GRP78, CHOP, ATF6, and p-PERK) (P<0.05).
CONCLUSIONS
Copper overload aggravates vascular endothelial injury in KD by activating the ERS pathway. TTM can exert protective effects on the endothelium by regulating copper metabolism and inhibiting the ERS pathway.
Endoplasmic Reticulum Stress
;
Copper/toxicity*
;
Male
;
Mucocutaneous Lymph Node Syndrome/metabolism*
;
Animals
;
Humans
;
Endoplasmic Reticulum Chaperone BiP
;
Mice, Inbred C57BL
;
Mice
;
Human Umbilical Vein Endothelial Cells
;
Apoptosis
;
Endothelium, Vascular/injuries*
9.Clinical Characteristics and Prognosis of B-cell Acute Lymphoblastic Leukemia Patients with IKZF1 Deletion.
Li-Hua WANG ; Yan GUO ; Yuan ZHANG ; Xiu-Feng WANG ; Xian-Kai LIU ; Yan HUANG
Journal of Experimental Hematology 2025;33(4):966-971
OBJECTIVE:
To analyze clinical characteristics and prognosis of B-cell acute lymphoblastic leukemia (B-ALL) patients with IKZF1 deletion.
METHODS:
72 patients with B-ALL admitted to our hospital from April 2020 to January 2023 were selected, IKZF1 deletion were detected, and clinical characteristics and prognosis were analyzed.
RESULTS:
Among the 72 patients, a total of 32 patients (44.4%) were identified with IKZF1 deletions (IKZF1 + ). There was no statistically significant difference in basic clinical data between patients with normal IKZF1 (IKZF1 -) and those with IKZF1 + (P >0.05). The proportion of patients with IKZF1 + in Ph+ group was significantly higher than that in Ph- group (P < 0.05). The main types of IKZF1 + were exon 1-8 deletion (34.4%) and exon 4-7 deletion (31.2%). The median OS and PFS of IKZF1 - patients were significantly longer than those of IKZF1 + patients (OS: 26.0 months vs 16.0 months, χ 2=23.094, P < 0.05; PFS: 26.0 months vs 16.0 months, χ 2=11.150, P < 0.05). Among IKZF1 + patients, the median OS of patients who received allogeneic hematopoietic stem cell transplantation (allo-HSCT) was significantly longer than that of patients who did not receive allo-HSCT (no reached vs 15.0 months, χ 2=5.685, P < 0.05).
CONCLUSION
IKZF1 deletion is a risk factor affecting the prognosis of B-ALL patients.
Humans
;
Ikaros Transcription Factor/genetics*
;
Prognosis
;
Gene Deletion
;
Female
;
Male
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Adult
;
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Adolescent
;
Young Adult
;
Middle Aged
10.Single-cell and spatial transcriptomic analysis reveals that an immune cell-related signature could predict clinical outcomes for microsatellite-stable colorectal cancer patients receiving immunotherapy.
Shijin YUAN ; Yan XIA ; Guangwei DAI ; Shun RAO ; Rongrong HU ; Yuzhen GAO ; Qing QIU ; Chenghao WU ; Sai QIAO ; Yinghua XU ; Xinyou XIE ; Haizhou LOU ; Xian WANG ; Jun ZHANG
Journal of Zhejiang University. Science. B 2025;26(4):371-392
Recent data suggest that vascular endothelial growth factor receptor inhibitor (VEGFRi) can enhance the anti-tumor activity of the anti-programmed cell death-1 (anti-PD-1) antibody in colorectal cancer (CRC) with microsatellite stability (MSS). However, the comparison between this combination and standard third-line VEGFRi treatment is not performed, and reliable biomarkers are still lacking. We retrospectively enrolled MSS CRC patients receiving anti-PD-1 antibody plus VEGFRi (combination group, n=54) or VEGFRi alone (VEGFRi group, n=32), and their efficacy and safety were evaluated. We additionally examined the immune characteristics of the MSS CRC tumor microenvironment (TME) through single-cell and spatial transcriptomic data, and an MSS CRC immune cell-related signature (MCICRS) that can be used to predict the clinical outcomes of MSS CRC patients receiving immunotherapy was developed and validated in our in-house cohort. Compared with VEGFRi alone, the combination of anti-PD-1 antibody and VEGFRi exhibited a prolonged survival benefit (median progression-free survival: 4.4 vs. 2.0 months, P=0.0024; median overall survival: 10.2 vs. 5.2 months, P=0.0038) and a similar adverse event incidence. Through single-cell and spatial transcriptomic analysis, we determined ten MSS CRC-enriched immune cell types and their spatial distribution, including naive CD4+ T, regulatory CD4+ T, CD4+ Th17, exhausted CD8+ T, cytotoxic CD8+ T, proliferated CD8+ T, natural killer (NK) cells, plasma, and classical and intermediate monocytes. Based on a systemic meta-analysis and ten machine learning algorithms, we obtained MCICRS, an independent risk factor for the prognosis of MSS CRC patients. Further analyses demonstrated that the low-MCICRS group presented a higher immune cell infiltration and immune-related pathway activation, and hence a significant relation with the superior efficacy of pan-cancer immunotherapy. More importantly, the predictive value of MCICRS in MSS CRC patients receiving immunotherapy was also validated with an in-house cohort. Anti-PD-1 antibody combined with VEGFRi presented an improved clinical benefit in MSS CRC with manageable toxicity. MCICRS could serve as a robust and promising tool to predict clinical outcomes for individual MSS CRC patients receiving immunotherapy.
Humans
;
Colorectal Neoplasms/drug therapy*
;
Male
;
Female
;
Immunotherapy
;
Middle Aged
;
Aged
;
Tumor Microenvironment/immunology*
;
Retrospective Studies
;
Microsatellite Instability
;
Transcriptome
;
Single-Cell Analysis
;
Programmed Cell Death 1 Receptor/immunology*
;
Gene Expression Profiling
;
Immune Checkpoint Inhibitors/therapeutic use*
;
Adult
;
Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors*

Result Analysis
Print
Save
E-mail