1.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
2.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
3.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
4.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
5.Design, synthesis, and antitumor activity of novel thioheterocyclic nucleoside derivatives by suppressing the c-MYC pathway.
Xian-Jia LI ; Ke-Xin HUANG ; Ke-Xin WANG ; Ru LIU ; Dong-Chao WANG ; Yu-Ru LIANG ; Er-Jun HAO ; Yang WANG ; Hai-Ming GUO
Acta Pharmaceutica Sinica B 2025;15(7):3685-3707
Eightly-four novel thioheterocyclic nucleoside derivatives were designed, synthesized, and evaluated for antitumor activity in vitro and in vivo. Most of the compounds inhibited the growth of HCT116 and HeLa cancer cells in vitro, among them 33a and 36b exhibited potent activity against HCT116 cells (IC50 = 0.27 and 0.49 μmol/L, respectively). Both compounds 33a and 36b inhibited cell metastasis, arrested the cell cycle in the G2/M phase, and induced apoptosis in vitro. Mechanistic studies revealed that 33a and 36b increased ROS levels, led to DNA damage, ER stress, and mitochondrial dysfunction, and inhibited autophagy in HCT116 cells. Biological information analysis, RNA-sequencing, Gene Set Enrichment Analysis (GSEA), drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and SPR experiments identified that compounds 33a and 36b showed antitumor activity by suppressing the c-MYC pathway. c-MYC silencing assays indicated that c-MYC proteins participated in 33a-mediated anticancer activities in HCT116 cells. More importantly, compound 33a presented favorable pharmacokinetic properties in mice (T 1/2 = 6.8 h) and showed significant antitumor efficacy in vivo without obvious toxicity, showing promising potential for further clinical development.
6.Protective effect of placental mesenchymal stem cells in the treatment of pancreatic trauma in rats
Hong-Fei DONG ; Xi HUANG ; Zhang-Peng WANG ; Guang-Xu JING ; Ming SHI ; Xian-Hui LI ; Hong-Yu SUN
Medical Journal of Chinese People's Liberation Army 2024;49(4):439-448
Objective To investigate the protective effect of placental mesenchymal stem cells(P-MSCs)on pancreatic trauma(PT)in rats.Methods Sixty healthy adult male SD rats were randomly divided into control group,pancreatic trauma group(inject 1 ml of PBS solution locally in the pancreatic injury area and around the trauma area),and P-MSCs group[inject 1 ml of P-MSCs(1×106/ml)locally in the pancreatic injury area and around the trauma area],with 20 rats in each group.The pancreatic trauma rat model was established using a traumatic pressure of 400 kPa.Five rats were sacrificed at 1,3,5,and 7 d after modeling in each group,and serum and pancreatic tissue were collected.HE staining was used to observe the pathological changes of pancreatic tissue and pathological scores were performed.The ELISA method was used to measure the concentrations of serum amylase(AMS),lipase(LPS),tumor necrosis factor-α(TNF-α),interleukin-6(IL-6),IL-10,and transforming growth factor-β1(TGF-β1),as well as the activities of myeloperoxidase(MPO)and superoxide dismutase(SOD)in pancreatic tissue.The TUNEL method was used to observe the level of apoptosis in pancreatic tissue was observed by the TUNEL method.Results Compared with control group,pancreatic trauma group and P-MSCs group showed significant differences after pancreatic trauma,including the generation of peritoneal fluid increased(P<0.05),the ratio of pancreas to body weight and the total score of pancreatic tissue pathological damage increased(P<0.05),and serum levels of AMS,LPS,TNF-α,IL-6,and MPO activity increased early and showed a decreasing trend over time(P<0.05),while anti-inflammatory factors IL-10 and SOD activity showed an increasing trend over time(P<0.01),level of TGF-β1 in the early decline showed an upward trend over time(P<0.01),and the apoptosis index(AI)significantly increased(P<0.001).Compared with pancreatic trauma group,P-MSCs group showed an improvement in the overall morphology of pancreatic tissue,the generation of peritoneal fluid decreased(P<0.001),the pancreas to body weight ratio and the total score of pancreatic tissue pathological damage decreased(P<0.05),and serum levels of AMS,LPS,IL-6,TNF-α and MPO activity returned to normal levels faster(P<0.05);and the rate of anti-inflammatory factors IL-10,TGF-β1 and SOD activity elevation increased(P<0.05),the AI increased(P<0.001).Conclusion P-MSCs can achieve therapeutic effects on pancreatic trauma in rats by promoting pancreatic tissue repair,reducing local and systemic inflammation,improving tissue oxidative stress,and enhancing pancreatic acinar cell apoptosis.
7.Establishment of primary breast cancer cell line as new model for drug screening and basic research
Xian HAO ; Jianjun HUANG ; Wenxiu YANG ; Jinting LIU ; Junhong ZHANG ; Yubei LUO ; Qing LI ; Dahong WANG ; Yuwei GAO ; Fuyun TAN ; Li BO ; Yu ZHENG ; Rong WANG ; Jianglong FENG ; Jing LI ; Chunhua ZHAO ; Xiaowei DOU
China Oncology 2024;34(6):561-570
Background and purpose:In 2016 the National Cancer Institute(NCI)decided stopping to use NCI-60 cell lines for drug screening,suggesting that tumor cell lines were losing their value as a tool for drug discovery and basic research.The reason for NCI-60 cells'retirement'was that the preclinical studies based on traditional cellular and animal models did not obtain the corresponding expected efficacy in clinical trials.Since the major cancer behaviors,such as proliferation and metastasis,are fundamentally altered with long-term culture,the tumor cell lines are not representative of the characteristics of cancer in patients.Currently,scientists hope to create a new cancer model that are derived from fresh patient samples and tagged with details about their clinical past.Our purpose was to create patient-derived breast cancer primary cell lines as new cancer model for drug screening and basic research.Methods:Breast cancer tissues were collected in the Department of Breast Surgery,Affiliated Hospital of Guizhou Medical University.The collection of tumor tissue samples was approved by the Ethics Committee of the Affiliated Hospital of Guizhou Medical University(approval number:2022 ethics No.313),and the collection and use of tumor tissues complied with the Declaration of Helsinki.The primary breast cancer cell lines were isolated from the patient's breast cancer tissues and cultured in BCMI medium.After the cells proliferated,the media were replaced with DEME medium.Cell line STR genotyping was done to determine cell-specific genetic markers and identification.Clone formation assay and transplantation assay were done to analyze the ability of breast cancer primary cell lines to form tumors.Results:We created 6 primary breast cancer cell lines.The 6 primary breast cancer cell lines from the patients were tagged with the definitively clinicopathological features,clinical diagnosis,therapeutic regimens,clinical effectiveness and prognostic outcomes.The STR genotyping assays identified the genetic markers and determined the identities of the 6 primary breast cancer cell lines.Clone formation assays and transplantation assay showed that the proliferative capacities of the patient-derived primary breast cancer cell lines were significantly greater compared with the conventional breast cancer cell lines.Conclusion:We created a panel of 6 patient-derived primary breast cancer cell lines as new cancer model for drug screening and basic research in breast cancer.
8.Exploration on the Medication Rules of HUANG Li in Treating Recurrent Angina Pectoris After Percutaneous Coronary Intervention for Coronary Heart Disease
Shi-Yi TAO ; Xian-Wen TANG ; Lin-Tong YU ; De-Shuang YANG ; Rui-Qi YAO ; Lan-Xin ZHANG ; Jia-Yun WU ; Li HUANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(6):1598-1606
Objective To explore the medication rules of Professor HUANG Li for the treatment of recurrent angina pectoris after percutaneous coronary intervention(PCI)for coronary heart disease by data mining method.Methods The prescriptions for effective cases of recurrent angina pectoris after PCI for coronary heart disease treated by Professor HUANG Li in the outpatient department of China-Japan Friendship Hospital were collected.SPSS Statistics 26.0 software and SPSS Modeler 18.0 software were used for frequency statistics,analysis of the therapeutic actions,properties,flavors and meridian tropism of the prescribed herbs as well as association rule analysis,cluster analysis and factor analysis of the herbs.Results A total of 344 Chinese medicine prescriptions were obtained,involving 209 herbs,with a cumulative frequency of 5 874 times.The top 30 Chinese medicinals were named as the high-frequency Chinese medicines,and the herbs with the frequency over 100 times in descending order were Astragali Radix,Chuanxiong Rhizoma,Puerariae Lobatae Radix,Rhodiolae Crenulatae Radix et Rhizoma,Notoginseng Radix et Rhizoma,Poria,Dalbergiae Odoriferae Lignum,Atractylodis Macrocephalae Rhizoma,Curcumae Rhizoma,Sparganii Rhizoma,Dioscoreae Rhizoma,Citri Reticulatae Pericarpium,Pinelliae Rhizoma Praeparatum,Codonopsis Radix,and Glycyrrhizae Radix et Rhizoma.The high-frequency Chinese medicinals were mostly classified as blood-activating and stasis-resolving drugs and qi-replenishing drugs.The medicinal properties of the drugs were characterized by being warm,mild,or cold,the flavors were predominated by being sweet,pungent or bitter,and the medicinals usually had the meridian tropism of the spleen,lung and liver meridians.A total of 30 association rules were mined out,cluster analysis yielded 5 herbal groups,and factor analysis yielded 11 groups of common factors.Conclusion For the treatment of cardiovascular diseases,Professor HUANG Li follows the theory of qi,blood and water,and especially pays more attention to the ascending and descending of qi movement.For qi deficiency and blood stasis contribute to the basic pathogenesis of recurrent angina pectoris after PCI,the therapy of benefiting qi,activating blood and removing stasis is recommended.Moreover,the simultaneous regulation of five zang-organs and simultaneous use of the cold and warm herbs are performed,and the herbs of benefiting qi and invigorating spleen,resolving phlegm and inducing diuresis,tranquilizing mind,promoting qi and dissipating masses,and activating blood to eliminate stasis are used for adjuvant therapy.
9.Clinical characteristics and outcomes of psoriasis patients with COVID-19: A retrospective, multicenter cohort study in China
Yanhua LIU ; Zhongrui XU ; Jian ZHOU ; Aijun CHEN ; Junling ZHANG ; Xiaojing KANG ; Xian JIANG ; Chengzhi LYU ; Chunrui SHI ; Yuling SHI ; Xiaoming LIU ; Fuqiu LI ; Bin YANG ; Yongmei HUANG ; Chen YU ; Gang WANG
Chinese Medical Journal 2024;137(14):1736-1743
Background::Limited information exists regarding the impact of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection on psoriasis patients. The objective of this study was to identify clinical factors associated with the prognosis of psoriasis following SARS-CoV-2 infection.Methods::A retrospective, multicenter study was conducted between March and May 2023. Univariable and multivariable logistic regression analyses were employed to identify factors associated with coronavirus disease 2019 (COVID-19)-related psoriasis outcomes. The study included 2371 psoriasis patients from 12 clinical centers, with 2049 of them having been infected with SARS-CoV-2.Results::Among the infected groups, lower exacerbation rates were observed in individuals treated with biologics compared to those receiving traditional systemic or nonsystemic treatments (22.3% [236/1058] vs. 39.8% [92/231] vs. 37.5% [140/373], P <0.001). Psoriasis progression with lesions (adjusted odds ratio [OR] = 8.197, 95% confidence interval [95% CI] = 5.685–11.820, compared to no lesions), hypertension (adjusted OR = 1.582, 95% CI = 1.068–2.343), traditional systemic (adjusted OR = 1.887, 95% CI= 1.263–2.818), and nonsystemic treatment (adjusted OR= 1.602, 95% CI= 1.117–2.297) were found to be associated with exacerbation of psoriasis after SARS-CoV-2 infection, but not biologics (adjusted OR = 0.931, 95% CI = 0.680–1.274, compared to no treatment), according to multivariable logistic regression analysis. Conclusions::A reduced risk of psoriasis exacerbation after SARS-CoV-2 infection was observed with biologics compared to traditional systemic and nonsystemic treatments. Significant risk factors for exacerbation after infection were identified as existing psoriatic lesions and hypertension.
10.Multisystem inflammatory syndrome in children in the context of coronavirus disease 2019 pandemic
Bin ZHOU ; Yu-Kun HUANG ; Shao-Xian HONG ; Fu-Yong JIAO ; Kai-Sheng XIE
Chinese Journal of Contemporary Pediatrics 2024;26(1):98-102
Multisystem inflammatory syndrome in children(MIS-C)is a complex syndrome characterized by multi-organ involvement that has emerged in the context of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)outbreak.The clinical presentation of MIS-C is similar to Kawasaki disease but predominantly presents with fever and gastrointestinal symptoms,and severe cases can involve toxic shock and cardiac dysfunction.Epidemiological findings indicate that the majority of MIS-C patients test positive for SARS-CoV-2 antibodies.The pathogenesis and pathophysiology of MIS-C remain unclear,though immune dysregulation following SARS-CoV-2 infection is considered a major contributing factor.Current treatment approaches for MIS-C primarily involve intravenous immunoglobulin therapy and symptomatic supportive care.This review article provides a comprehensive overview of the definition,epidemiology,pathogenesis,clinical presentation,diagnosis,treatment,and prognosis of MIS-C.

Result Analysis
Print
Save
E-mail