1.P4HA1 mediates YAP hydroxylation and accelerates collagen synthesis in temozolomide-resistant glioblastoma.
Xueru LI ; Gangfeng YU ; Xiao ZHONG ; Jiacheng ZHONG ; Xiangyu CHEN ; Qinglong CHEN ; Jinjiang XUE ; Xi YANG ; Xinchun ZHANG ; Yao LING ; Yun XIU ; Yaqi DENG ; Hongda LI ; Wei MO ; Yong ZHU ; Ting ZHANG ; Liangjun QIAO ; Song CHEN ; Fanghui LU
Chinese Medical Journal 2025;138(16):1991-2005
BACKGROUND:
Temozolomide (TMZ) resistance is a significant challenge in treating glioblastoma (GBM). Collagen remodeling has been shown to be a critical factor for therapy resistance in other cancers. This study aimed to investigate the mechanism of TMZ chemoresistance by GBM cells reprogramming collagens.
METHODS:
Key extracellular matrix components, including collagens, were examined in paired primary and recurrent GBM samples as well as in TMZ-treated spontaneous and grafted GBM murine models. Human GBM cell lines (U251, TS667) and mouse primary GBM cells were used for in vitro studies. RNA-sequencing analysis, chromatin immunoprecipitation, immunoprecipitation-mass spectrometry, and co-immunoprecipitation assays were conducted to explore the mechanisms involved in collagen accumulation. A series of in vitro and in vivo experiments were designed to assess the role of the collagen regulators prolyl 4-hydroxylase subunit alpha 1 (P4HA1) and yes-associated protein (YAP) in sensitizing GBM cells to TMZ.
RESULTS:
This study revealed that TMZ exposure significantly elevated collagen type I (COL I) expression in both GBM patients and murine models. Collagen accumulation sustained GBM cell survival under TMZ-induced stress, contributing to enhanced TMZ resistance. Mechanistically, P4HA1 directly binded to and hydroxylated YAP, preventing ubiquitination-mediated YAP degradation. Stabilized YAP robustly drove collagen type I alpha 1 ( COL1A1) transcription, leading to increased collagen deposition. Disruption of the P4HA1-YAP axis effectively reduced COL I deposition, sensitized GBM cells to TMZ, and significantly improved mouse survival.
CONCLUSION
P4HA1 maintained YAP-mediated COL1A1 transcription, leading to collagen accumulation and promoting chemoresistance in GBM.
Temozolomide
;
Humans
;
Glioblastoma/drug therapy*
;
Animals
;
Mice
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm/genetics*
;
YAP-Signaling Proteins
;
Hydroxylation
;
Dacarbazine/pharmacology*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Transcription Factors/metabolism*
;
Collagen/biosynthesis*
;
Collagen Type I/metabolism*
;
Prolyl Hydroxylases/metabolism*
;
Antineoplastic Agents, Alkylating/therapeutic use*
2.Safety and effectiveness of lecanemab in Chinese patients with early Alzheimer's disease: Evidence from a multidimensional real-world study.
Wenyan KANG ; Chao GAO ; Xiaoyan LI ; Xiaoxue WANG ; Huizhu ZHONG ; Qiao WEI ; Yonghua TANG ; Peijian HUANG ; Ruinan SHEN ; Lingyun CHEN ; Jing ZHANG ; Rong FANG ; Wei WEI ; Fengjuan ZHANG ; Gaiyan ZHOU ; Weihong YUAN ; Xi CHEN ; Zhao YANG ; Ying WU ; Wenli XU ; Shuo ZHU ; Liwen ZHANG ; Naying HE ; Weihuan FANG ; Miao ZHANG ; Yu ZHANG ; Huijun JU ; Yaya BAI ; Jun LIU
Chinese Medical Journal 2025;138(22):2907-2916
INTRODUCTION:
Lecanemab has shown promise in treating early Alzheimer's disease (AD), but its safety and efficacy in Chinese populations remain unexplored. This study aimed to evaluate the safety and 6-month clinical outcomes of lecanemab in Chinese patients with mild cognitive impairment (MCI) or mild AD.
METHODS:
In this single-arm, real-world study, participants with MCI due to AD or mild AD received biweekly intravenous lecanemab (10 mg/kg). The study was conducted at Hainan Branch, Ruijin Hospital Shanghai Jiao Tong University School of Medicine. Patient enrollment and baseline assessments commenced in November 2023. Safety assessments included monitoring for amyloid-related imaging abnormalities (ARIA) and other adverse events. Clinical and biomarker changes from baseline to 6 months were evaluated using cognitive scales (mini-mental state examination [MMSE], montreal cognitive assessment [MoCA], clinical dementia rating-sum of boxes [CDR-SB]), plasma biomarker analysis, and advanced neuroimaging.
RESULTS:
A total of 64 patients were enrolled in this ongoing real-world study. Safety analysis revealed predominantly mild adverse events, with infusion-related reactions (20.3%, 13/64) being the most common. Of these, 69.2% (9/13) occurred during the initial infusion and 84.6% (11/13) did not recur. ARIA-H (microhemorrhages/superficial siderosis) and ARIA-E (edema/effusion) were observed in 9.4% (6/64) and 3.1% (2/64) of participants, respectively, with only two symptomatic cases (one ARIA-E presenting with headache and one ARIA-H with visual disturbances). After 6 months of treatment, cognitive scores remained stable compared to baseline (MMSE: 22.33 ± 5.58 vs . 21.27 ± 4.30, P = 0.733; MoCA: 16.38 ± 6.67 vs . 15.90 ± 4.78, P = 0.785; CDR-SB: 2.30 ± 1.65 vs . 3.16 ± 1.72, P = 0.357), while significantly increasing plasma amyloid-β 42 (Aβ42) (+21.42%) and Aβ40 (+23.53%) levels compared to baseline.
CONCLUSIONS:
Lecanemab demonstrated a favorable safety profile in Chinese patients with early AD. Cognitive stability and biomarker changes over 6 months suggest potential efficacy, though high dropout rates and absence of a control group warrant cautious interpretation. These findings provide preliminary real-world evidence for lecanemab's use in China, supporting further investigation in larger controlled studies.
REGISTRATION
ClinicalTrials.gov , NCT07034222.
Humans
;
Alzheimer Disease/drug therapy*
;
Male
;
Female
;
Aged
;
Middle Aged
;
Cognitive Dysfunction/drug therapy*
;
Aged, 80 and over
;
Amyloid beta-Peptides/metabolism*
;
Biomarkers
;
East Asian People
3.Mechanism of icariin in promoting osteogenic differentiation of BMSCs and improving bone metabolism disorders through caveolin-1/Hippo signaling pathway.
Yi-Dan HAN ; Hai-Feng ZHANG ; Yun-Teng XU ; Yu-Huan ZHONG ; Xiao-Ning WANG ; Yun YU ; Yuan-Li YAN ; Shan-Shan WANG ; Xi-Hai LI
China Journal of Chinese Materia Medica 2025;50(3):600-608
Guided by the theory of "the kidney storing essence, governing the bones, and producing marrow", this study explored the mechanism of icariin(ICA) in regulating the osteogenic differentiation of rat bone mesenchymal stem cells(BMSCs) through caveolin-1(Cav1) via in vitro and in vivo experiments, aiming to provide a theoretical basis for the prevention and treatment of postmenopausal osteoporosis with traditional Chinese medicine(TCM). Primary cells were obtained from 4-week-old female SD rats using the whole bone marrow adherent method. Flow cytometry was used to detect the expression of surface markers CD29, CD90, CD11b, and CD45. The potential for osteogenic and adipogenic differentiation was assessed. The effect of ICA on cell viability was determined using the CCK-8 assay, and the impact of ICA on the formation of mineralized nodules was verified by alizarin red staining. A stable Cav1-silenced cell line was constructed using lentivirus. The effect of Cav1 silencing on osteogenic differentiation was observed via alizarin red staining. Western blot analysis was conducted to detect the expression of Cav1, Hippo/TAZ, and osteogenic markers such as Runt-related transcription factor 2(RUNX2) and alkaline phosphatase(ALP). The results showed that primary cells were successfully obtained using the whole bone marrow adherent method, positively expressing surface markers of rat BMSCs and possessing the potential for both osteogenic and adipogenic differentiation. The CCK-8 assay and alizarin red staining results indicated that 1×10~(-7) mol·L~(-1) was the optimal concentration of ICA for intervention in this experiment(P<0.05). During osteogenic induction, ICA inhibited Cav1 expression(P<0.05) while promoting TAZ expression(P<0.05). Alizarin red staining demonstrated that Cav1 silencing significantly promoted the osteogenic differentiation of BMSCs. After ICA intervention, TAZ expression was activated, and the expression of osteogenic markers ALP and RUNX2 was increased. In conclusion, Cav1 silencing significantly promotes the osteogenic differentiation of BMSCs, and ICA promotes this differentiation by inhibiting Cav1 and regulating the Hippo/TAZ signaling pathway.
Animals
;
Mesenchymal Stem Cells/metabolism*
;
Caveolin 1/genetics*
;
Osteogenesis/drug effects*
;
Rats, Sprague-Dawley
;
Rats
;
Cell Differentiation/drug effects*
;
Female
;
Signal Transduction/drug effects*
;
Flavonoids/administration & dosage*
;
Protein Serine-Threonine Kinases/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Cells, Cultured
;
Humans
4.Expert consensus on the diagnosis and treatment of cemental tear.
Ye LIANG ; Hongrui LIU ; Chengjia XIE ; Yang YU ; Jinlong SHAO ; Chunxu LV ; Wenyan KANG ; Fuhua YAN ; Yaping PAN ; Faming CHEN ; Yan XU ; Zuomin WANG ; Yao SUN ; Ang LI ; Lili CHEN ; Qingxian LUAN ; Chuanjiang ZHAO ; Zhengguo CAO ; Yi LIU ; Jiang SUN ; Zhongchen SONG ; Lei ZHAO ; Li LIN ; Peihui DING ; Weilian SUN ; Jun WANG ; Jiang LIN ; Guangxun ZHU ; Qi ZHANG ; Lijun LUO ; Jiayin DENG ; Yihuai PAN ; Jin ZHAO ; Aimei SONG ; Hongmei GUO ; Jin ZHANG ; Pingping CUI ; Song GE ; Rui ZHANG ; Xiuyun REN ; Shengbin HUANG ; Xi WEI ; Lihong QIU ; Jing DENG ; Keqing PAN ; Dandan MA ; Hongyu ZHAO ; Dong CHEN ; Liangjun ZHONG ; Gang DING ; Wu CHEN ; Quanchen XU ; Xiaoyu SUN ; Lingqian DU ; Ling LI ; Yijia WANG ; Xiaoyuan LI ; Qiang CHEN ; Hui WANG ; Zheng ZHANG ; Mengmeng LIU ; Chengfei ZHANG ; Xuedong ZHOU ; Shaohua GE
International Journal of Oral Science 2025;17(1):61-61
Cemental tear is a rare and indetectable condition unless obvious clinical signs present with the involvement of surrounding periodontal and periapical tissues. Due to its clinical manifestations similar to common dental issues, such as vertical root fracture, primary endodontic diseases, and periodontal diseases, as well as the low awareness of cemental tear for clinicians, misdiagnosis often occurs. The critical principle for cemental tear treatment is to remove torn fragments, and overlooking fragments leads to futile therapy, which could deteriorate the conditions of the affected teeth. Therefore, accurate diagnosis and subsequent appropriate interventions are vital for managing cemental tear. Novel diagnostic tools, including cone-beam computed tomography (CBCT), microscopes, and enamel matrix derivatives, have improved early detection and management, enhancing tooth retention. The implementation of standardized diagnostic criteria and treatment protocols, combined with improved clinical awareness among dental professionals, serves to mitigate risks of diagnostic errors and suboptimal therapeutic interventions. This expert consensus reviewed the epidemiology, pathogenesis, potential predisposing factors, clinical manifestations, diagnosis, differential diagnosis, treatment, and prognosis of cemental tear, aiming to provide a clinical guideline and facilitate clinicians to have a better understanding of cemental tear.
Humans
;
Dental Cementum/injuries*
;
Consensus
;
Diagnosis, Differential
;
Cone-Beam Computed Tomography
;
Tooth Fractures/therapy*
5.Regulated cell death in age-related macular degeneration: Regulatory mechanisms and therapeutic potential.
Le-Le ZHANG ; Jia-Mei YU ; Zhong-Xi FAN ; Wen-Qi XIE ; Liang ZOU ; Feiya SHENG
Journal of Pharmaceutical Analysis 2025;15(11):101285-101285
Age-related macular degeneration (AMD) represents a predominant cause of blindness among older adults, with limited therapeutic options currently available. Oxidative stress, inflammation, and retinal pigment epithelium injury are recognized as key contributors to the pathogenesis of AMD. Regulated cell death plays a pivotal role in mediating cellular responses to stress, maintaining tissue homeostasis, and contributing to disease progression. Recent research has elucidated several regulated cell death pathways-such as apoptosis, ferroptosis, pyroptosis, necroptosis, and autophagy-that may contribute to the progression of AMD owing to cell death in the retinal pigment epithelium. These discoveries open new avenues for therapeutic interventions in patients with AMD. In this review, we provide a comprehensive summary and analysis of the latest advancements regarding the relationship between regulated cell death and AMD. Moreover, we examined the therapeutic potential of targeting regulated cell death pathways for the treatment and prevention of AMD, highlighting their roles as promising targets for future therapeutic strategies.
6.Effects of Yiqi Huoxue Jiedu formula on the gut microbiota in elderly patients with pulmonary-derived sepsis based on 16S rDNA sequencing: a multicenter prospective randomized double-blind controlled trial.
Rui CHEN ; Jiahua LAI ; Minlin ZHONG ; Ruifeng ZENG ; Fang LAI ; Yi YU ; Yuntao LIU ; Xiaotu XI ; Jun LI
Chinese Critical Care Medicine 2025;37(5):416-423
OBJECTIVE:
To investigate the effects of the combined Yiqi Huoxue Jiedu formula (YHJF) on intestinal microbiota in elderly patients with pulmonary-derived sepsis and identify potential microbial targets.
METHODS:
A prospective randomized double-blind controlled trial was conducted. Elderly patients with pulmonary infection-induced sepsis admitted to the emergency department of Guangdong Provincial Hospital of Traditional Chinese Medicine (TCM), intensive care unit (ICU) of Fangcun Hospital, and ICU of Daxuecheng Hospital, from November 2020 to October 2021 were enrolled and randomized into two groups. Both groups received conventional Western medicine treatment. The observation group additionally received YHJF (composed of 15 g of Panax ginseng, 9 g of Panax notoginseng, and 3 g of Rheum palmatum, dissolved in 50 mL warm water) orally or via nasogastric tube twice daily for 7 days; while the control group received a placebo. Clinical data and fresh fecal samples were collected before treatment and on days 5-7 of treatment. Intestinal microbiota diversity and structure were analyzed via 16S rDNA sequencing and bioinformatics [α diversity, β diversity, and linear discriminant analysis effect size (LEfSe)].
RESULTS:
Fifty-five patients were included (29 in the control group, 26 in the observation group). There were no significantly differences in gender, age, comorbidities, and baseline sequential organ failure assessment (SOFA), acute physiology and chronic health evaluation II (APACHE II), acute gastrointestinal injury (AGI) classification score, and gastrointestinal failure (GIF) score between the two groups. Compared to the control group, the observation group showed significantly lower serum procalcitonin, APACHE II score, and greater reduction in GIF score by day 7. Thirty fecal samples were collected pre-treatment (baseline group), 29 post-treatment from the control group, and 26 from the observation group. Gut microbiota α diversity analysis revealed that Simpson index in the observation group and control group were significantly decreased compared to the baseline group [0.75 (0.53, 0.91), 0.81 (0.32, 0.91) vs. 0.88 (0.87, 0.89), both P < 0.05], but there was no significantly difference between the observation group and the control group. There were no significantly differences in Chao1, Ace, and Shannon indices among three groups. β diversity analysis indicated that distinct microbiota structures among three groups (R2 = 0.096, P = 0.026). Species difference analysis showed that, at the phylum level, Firmicutes (53.69%), Actinobacteria (16.23%), Proteobacteria (15.39%), and Bacteroidetes (9.57%) dominated, with no significant intergroup differences. At the genus level, 38 taxa showed significant differences. Compared to the control group, the observation group exhibited increased Erysipelatoclostridium (P = 0.014) and Faecalibacterium (P = 0.013), and decreased Bacteroides (P = 0.009), Bilophila (P = 0.005), Eggerthella (P = 0.002), and Collinsella (P = 0.043). LEfSe analysis highlighted Lactobacillus salivarius, Erysipelatoclostridium, Collinsella, Cloacibacillus, and Bacteroides as key discriminators.
CONCLUSION
YHJF combined with conventional therapy alters intestinal microbiota structure in patients with elderly pulmonary-derived sepsis, with Bacteroides, Erysipelatoclostridium, and Collinsella identified as potential microbial targets.
Humans
;
Gastrointestinal Microbiome/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Double-Blind Method
;
Sepsis/drug therapy*
;
Aged
;
Prospective Studies
;
RNA, Ribosomal, 16S/genetics*
;
Male
;
Female
;
Panax notoginseng
;
Rheum
7.Longitudinal Associations between Vitamin D Status and Systemic Inflammation Markers among Early Adolescents.
Ting TANG ; Xin Hui WANG ; Xue WEN ; Min LI ; Meng Yuan YUAN ; Yong Han LI ; Xiao Qin ZHONG ; Fang Biao TAO ; Pu Yu SU ; Xi Hua YU ; Geng Fu WANG
Biomedical and Environmental Sciences 2025;38(1):94-99
8.(Meta)transcriptomic Insights into the Role of Ticks in Poxvirus Evolution and Transmission: A Multicontinental Analysis.
Yu Xi WANG ; Jing Jing HU ; Jing Jing HOU ; Xiao Jie YUAN ; Wei Jie CHEN ; Yan Jiao LI ; Qi le GAO ; Yue PAN ; Shui Ping LU ; Qi CHEN ; Si Ru HU ; Zhong Jun SHAO ; Cheng Long XIONG
Biomedical and Environmental Sciences 2025;38(9):1058-1070
OBJECTIVE:
Poxviruses are zoonotic pathogens that infect humans, mammals, vertebrates, and arthropods. However, the specific role of ticks in transmission and evolution of these viruses remains unclear.
METHODS:
Transcriptomic and metatranscriptomic raw data from 329 sampling pools of seven tick species across five continents were mined to assess the diversity and abundance of poxviruses. Chordopoxviral sequences were assembled and subjected to phylogenetic analysis to trace the origins of the unblasted fragments within these sequences.
RESULTS:
Fifty-eight poxvirus species, representing two subfamilies and 20 genera, were identified, with 212 poxviral sequences assembled. A substantial proportion of AT-rich fragments were detected in the assembled poxviral genomes. These genomic sequences contained fragments originating from rodents, archaea, and arthropods.
CONCLUSION
Our findings indicate that ticks play a significant role in the transmission and evolution of poxviruses. These viruses demonstrate the capacity to modulate virulence and adaptability through horizontal gene transfer, gene recombination, and gene mutations, thereby promoting co-existence and co-evolution with their hosts. This study advances understanding of the ecological dynamics of poxvirus transmission and evolution and highlights the potential role of ticks as vectors and vessels in these processes.
Animals
;
Poxviridae/physiology*
;
Ticks/virology*
;
Phylogeny
;
Transcriptome
;
Evolution, Molecular
;
Poxviridae Infections/virology*
;
Genome, Viral
9.Targeting Ferroptosis to Enhance Radiosensitivity of Glioblastoma
Xi-Zhong JIANG ; Shi-Yu QIAO ; Tong JIANG ; Ying YAN ; Ying XU ; Tong WU
Progress in Biochemistry and Biophysics 2024;51(6):1284-1291
Glioblastoma (GBM), one of the most common malignant tumors in the central nervous system (CNS), is characterized by diffuse and invasive growth as well as resistance to various combination therapies. GBM is the most prevalent type with the highest degree of malignancy and the worst prognosis. While current clinical treatments include surgical resection, radiotherapy, temozolomide chemotherapy, novel molecular targeted therapy, and immunotherapy, the median survival time of GBM patients is only about one year. Radiotherapy is one of the important treatment modalities for GBM, which relies on ionizing radiation to eradicate tumor cells. Approximately 60% to 70% of patients need to receive radiotherapy as postoperative radiotherapy or neoadjuvant radiotherapy during the treatment process. However, during radiotherapy, the radioresistant effect caused by DNA repair activation and cell apoptosis inhibition impedes the therapeutic effect of malignant glioblastoma.Ferroptosis was first proposed by Dr. Brent R. Stockwell in 2012. It is an iron-dependent mode of cell death induced by excessive lipid peroxidation. Although the application of ferroptosis in tumor therapy is still in the exploratory stage, it provides a completely new idea for tumor therapy as a novel form of cell death. Ferroptosis has played a significant role in the treatment of GBM. Specifically, research has revealed the key processes of ferroptosis occurrence, including intracellular iron accumulation, reactive oxygen species (ROS) generation, lipid peroxidation, and a decrease in the activity of the antioxidant system. Among them, glutathione peroxidase 4(GPX4) in the cytoplasm and mitochondria, ferroptosis suppressor protein 1 (FSP1) on the plasma membrane, and dihydroorotate dehydrogenase (DHODH) in the mitochondria constitute an antioxidant protection system against ferroptosis. In iron metabolism, nuclear receptor coactivator 4 (NCOA4) can mediate ferritin autophagy to regulate intracellular iron balance based on intracellular iron content. Heme oxygenase1 (HMOX1) catalyzes heme degradation to release iron and regulate ferroptosis. Radiation can trigger ferroptosis by generating ROS, inhibiting the signaling axis of the antioxidant system, depleting glutathione, upregulating acyl-CoA synthase long chain family member 4 (ACSL4), and inducing autophagy. Interestingly, some articles has documented that exposure to low doses of radiation (6 Gy for 24 h or 8 Gy for 4-12 h) can induce the expression of SLC7A11 and GPX4 in breast cancer and lung cancer cells, leading to radiation resistance, while radiation-induced ferroptosis occurs after 48 h. In contrast, high doses of ionizing radiation (20 Gy and 50 Gy) increase lipid peroxidation after 24 h. This suggests that radiation-induced oxidative stress is a double-edged sword that can regulate ferroptosis in both directions, and the ultimate fate of cells after radiation exposure——developing resistance and achieving homeostasis or undergoing ferroptosis——depends on the degree and duration of membrane lipid damage caused by the radiation dose. In addition, during the process of radiotherapy, methods such as inducing iron overload, damaging the antioxidant system, and disrupting mitochondrial function are used to target ferroptosis, thereby enhancing the radiosensitivity of glioblastoma. By promoting the occurrence of ferroptosis in tumor cells as a strategy to improve radiotherapy sensitivity, we can enhance the killing effect of ionizing radiation on tumor cells, thus providing more treatment options for patients with glioblastoma. In this paper, we reviewed ferroptosis and its mechanism, analyzed the molecular mechanism of radiation-induced ferroptosis, and discussed the effective strategies to regulate ferroptosis in enhancing the sensitivity of radiotherapy, with a view to providing an important reference value for improving the current status of glioblastoma treatment.
10.The therapeutic effect of Qingjie Huagong decoction on acute lung injury in rats with severe acute pancreatitis model and its mechanism
Min-Chao FENG ; Fang LUO ; Xi-Ping TANG ; Kai LI ; Xiao-Dong ZHU ; Bing-Yu ZHANG ; Guo-Zhong CHEN
Chinese Pharmacological Bulletin 2024;40(5):975-983
Aim To investigate the possible mechanism of action of Qingjie Huagong decoction(QJHGD)on acute lung injury(ALI)associated with severe acute pancreatitis(SAP)using network pharmacology,and to verify it by animal experiments.Methods The TC-MSP,BATMAN-TCM,ETCM,and SwissTargetPredic-tion databases were searched to obtain the action tar-gets of the blood-entering active ingredients of each drug in the QJHGD.The GeneCard database was searched to obtain SAP-ALI disease targets.The drug targets and disease targets were intersected to obtain common targets.Subsequently,the common targets were analyzed by STRING database and Cytoscape 3.7.1 software for protein interaction network analysis.GO and KEGG enrichment analysis was performed with the help of DAVID database.Finally,the key signa-ling pathways were verified by animal experiments.Results A total of 28 active ingredients were screened out for the treatment of SAP-ALI with 42 common tar-gets.PPI network analysis showed that STAT3,IL-6,and TGFB1 might be core targets;GO and KEGG en-richment analysis mainly involved cell proliferation,PI3K/AKT signaling pathways,etc.Animal experi-ments confirmed that QJHGD could improve the pathol-ogy of pancreas and lung tissues in SAP-ALI rat mod-el,down-regulate the expression levels of α-amylase,lipase,IL-1 β,IL-6,and TNF-α in serum,and down-regulate the expression levels of proteins and mRNAs related to PI3K/AKT1 signaling pathway in lung tis-sues.Conclusion QJHGD synergistically treats SAP-ALI through multi-component,multi-target,and multi-pathway,with a mechanism that may be related to the inhibition of PI3K/AKT signaling pathway activation.

Result Analysis
Print
Save
E-mail