1.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
2.Cartilage Protection and Anti-Inflammatory Effects of Fraxetin on Monosodium Iodoacetate-Induced Rat Model of Osteoarthritis
Zhiwei LIU ; Ran YANG ; Hao LIAN ; Yu ZHANG ; Lilun JIN
Laboratory Animal and Comparative Medicine 2025;45(3):259-268
ObjectiveTo establish a rat model of osteoarthritis and study the anti-inflammatory effects and mechanisms of fraxetin. MethodsEighteen 8-week-old male SPF-grade SD rats were randomly divided into three groups: Rats in the blank group received a right articular cavity injection of 50 μL of normal saline for 1 week; the model and intervention groups were injected with monosodium iodoacetate (MIA) into the right joint cavity to induce osteoarthritis, while the intervention group subsequently received fraxetin (5 mg·kg-1·d-1) for 1 week. Four weeks after drug intervention, abdominal aortic blood was collected. The animals were then euthanized, and knee joint cartilage were collected. The cartilage samples were stained with hematoxylin-eosin, safranin O-fast green, and toluidine blue for histopathological examination and scoring using the Mankin and OARSI scoring systems. The trabecular bone volume/total volume (Tb.BV/TV), trabecular bone surface density/total volume (Tb.BS/TV), and trabecular number (Tb.N) of each group were compared and analyzed using a micro-CT scanning system. The expression levels of various inflammatory factors [tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6)], and cartilage oligomeric matrix protein (COMP) were measured using enzyme-linked immunosorbent assay (ELISA). The expression levels of mitogen-activated protein kinase p38 (p38 MAPK), phosphorylation-p38 MAPK (p-p38 MAPK), c-Jun N-terminal kinase (JNK), and phosphorylation-JNK (p-JNK) were measured by western blotting. ResultsThe staining of cartilage sections of rat knee joints showed that the articular surface defects in the model group were severe, while the cartilage destruction in the intervention group was relatively reduced. Micro-CT results showed that Tb.BV/TV, Tb.BS/TV and Tb.N in the intervention group were significantly higher than those in the model group (P < 0.05); the Mankin score in the model group was significantly higher than that in the blank group (P < 0.05), the Mankin score in the intervention group was significantly lower than that in the model group (P < 0.05); while the OARSI score in the intervention group was significantly lower than that in the model group (P < 0.05). The results of the enzyme-linked immunosorbent assay showed that the serum levels of TNF-α, IL-1β, IL-6, and COMP in the model group were significantly higher than those in the blank group (all P < 0.05), while those in the intervention group were significantly lower than in the model group (P < 0.05). Western blot results showed that the expression levels of p-p38 MAPK and p-JNK in the knee cartilage tissue were significantly lower in the intervention group than in the model group (both P < 0.05), and significantly higher in the model group than in the blank group (both P < 0.05). ConclusionFraxetin may play a therapeutic role in a monosodium iodoacetate-induced rat model of osteoarthritis through the p38 MAPK pathway.
3.Cartilage Protection and Anti-Inflammatory Effects of Fraxetin on Monosodium Iodoacetate-Induced Rat Model of Osteoarthritis
Zhiwei LIU ; Ran YANG ; Hao LIAN ; Yu ZHANG ; Lilun JIN
Laboratory Animal and Comparative Medicine 2025;45(3):259-268
ObjectiveTo establish a rat model of osteoarthritis and study the anti-inflammatory effects and mechanisms of fraxetin. MethodsEighteen 8-week-old male SPF-grade SD rats were randomly divided into three groups: Rats in the blank group received a right articular cavity injection of 50 μL of normal saline for 1 week; the model and intervention groups were injected with monosodium iodoacetate (MIA) into the right joint cavity to induce osteoarthritis, while the intervention group subsequently received fraxetin (5 mg·kg-1·d-1) for 1 week. Four weeks after drug intervention, abdominal aortic blood was collected. The animals were then euthanized, and knee joint cartilage were collected. The cartilage samples were stained with hematoxylin-eosin, safranin O-fast green, and toluidine blue for histopathological examination and scoring using the Mankin and OARSI scoring systems. The trabecular bone volume/total volume (Tb.BV/TV), trabecular bone surface density/total volume (Tb.BS/TV), and trabecular number (Tb.N) of each group were compared and analyzed using a micro-CT scanning system. The expression levels of various inflammatory factors [tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6)], and cartilage oligomeric matrix protein (COMP) were measured using enzyme-linked immunosorbent assay (ELISA). The expression levels of mitogen-activated protein kinase p38 (p38 MAPK), phosphorylation-p38 MAPK (p-p38 MAPK), c-Jun N-terminal kinase (JNK), and phosphorylation-JNK (p-JNK) were measured by western blotting. ResultsThe staining of cartilage sections of rat knee joints showed that the articular surface defects in the model group were severe, while the cartilage destruction in the intervention group was relatively reduced. Micro-CT results showed that Tb.BV/TV, Tb.BS/TV and Tb.N in the intervention group were significantly higher than those in the model group (P < 0.05); the Mankin score in the model group was significantly higher than that in the blank group (P < 0.05), the Mankin score in the intervention group was significantly lower than that in the model group (P < 0.05); while the OARSI score in the intervention group was significantly lower than that in the model group (P < 0.05). The results of the enzyme-linked immunosorbent assay showed that the serum levels of TNF-α, IL-1β, IL-6, and COMP in the model group were significantly higher than those in the blank group (all P < 0.05), while those in the intervention group were significantly lower than in the model group (P < 0.05). Western blot results showed that the expression levels of p-p38 MAPK and p-JNK in the knee cartilage tissue were significantly lower in the intervention group than in the model group (both P < 0.05), and significantly higher in the model group than in the blank group (both P < 0.05). ConclusionFraxetin may play a therapeutic role in a monosodium iodoacetate-induced rat model of osteoarthritis through the p38 MAPK pathway.
4.Mechanism of Euphorbiae Ebracteolatae Radix processed by milk in reducing intestinal toxicity.
Chang-Li SHEN ; Hao WU ; Hong-Li YU ; Hong-Mei WEN ; Xiao-Bing CUI ; Hui-Min BIAN ; Tong-la-Ga LI ; Min ZENG ; Yan-Qing XU ; Yu-Xin GU
China Journal of Chinese Materia Medica 2025;50(12):3204-3213
This study aimed to investigate the correlation between changes in intestinal toxicity and compositional alterations of Euphorbiae Ebracteolatae Radix(commonly known as Langdu) before and after milk processing, and to explore the detoxification mechanism of milk processing. Mice were intragastrically administered the 95% ethanol extract of raw Euphorbiae Ebracteolatae Radix, milk-decocted(milk-processed), and water-decocted(water-processed) Euphorbiae Ebracteolatae Radix. Fecal morphology, fecal water content, and the release levels of inflammatory cytokines tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) in different intestinal segments were used as indicators to evaluate the effects of different processing methods on the cathartic effect and intestinal inflammatory toxicity of Euphorbiae Ebracteolatae Radix. LC-MS/MS was employed to analyze the small-molecule components in the raw product, the 95% ethanol extract of the milk-processed product, and the milky waste(precipitate) formed during milk processing, to assess the impact of milk processing on the chemical composition of Euphorbiae Ebracteolatae Radix. The results showed that compared with the blank group, both the raw and water-processed Euphorbiae Ebracteolatae Radix significantly increased the fecal morphology score, fecal water content, and the release levels of TNF-α and IL-1β in various intestinal segments(P<0.05). Compared with the raw group, all indicators in the milk-processed group significantly decreased(P<0.05), while no significant differences were observed in the water-processed group, indicating that milk, as an adjuvant in processing, plays a key role in reducing the intestinal toxicity of Euphorbiae Ebracteolatae Radix. Mass spectrometry results revealed that 29 components were identified in the raw product, including 28 terpenoids and 1 acetophenone. The content of these components decreased to varying extents after milk processing. A total of 28 components derived from Euphorbiae Ebracteolatae Radix were identified in the milky precipitate, of which 27 were terpenoids, suggesting that milk processing promotes the transfer of toxic components from Euphorbiae Ebracteolatae Radix into milk. To further investigate the effect of milk adjuvant processing on the toxic terpenoid components of Euphorbiae Ebracteolatae Radix, transmission electron microscopy(TEM) was used to observe the morphology of self-assembled casein micelles(the main protein in milk) in the milky precipitate. The micelles formed in casein-terpenoid solutions were characterized using particle size analysis, fluorescence spectroscopy, ultraviolet spectroscopy, and Fourier-transform infrared(FTIR) spectroscopy. TEM observations confirmed the presence of casein micelles in the milky precipitate. Characterization results showed that with increasing concentrations of toxic terpenoids, the average particle size of casein micelles increased, fluorescence intensity of the solution decreased, the maximum absorption wavelength in the UV spectrum shifted, and significant changes occurred in the infrared spectrum, indicating that interactions occurred between casein micelles and toxic terpenoid components. These findings indicate that the cathartic effect of Euphorbiae Ebracteolatae Radix becomes milder and its intestinal inflammatory toxicity is reduced after milk processing. The detoxification mechanism is that terpenoid components in Euphorbiae Ebracteolatae Radix reassemble with casein in milk to form micelles, promoting the transfer of some terpenoids into the milky precipitate.
Animals
;
Mice
;
Milk/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Male
;
Tumor Necrosis Factor-alpha/immunology*
;
Intestines/drug effects*
;
Interleukin-1beta/immunology*
;
Tandem Mass Spectrometry
;
Female
5.Mechanism of Hezi Decoction in reducing toxic side effects of Euphoriae Ebracteolata Radix on intestine based on proteomics.
Qian-Lin CHEN ; Hong-Li YU ; Hao WU ; Xin-Zhi WANG ; Tong-Laga LI ; Bing-Bing LIU ; Xin LI ; Yu-Xin GU ; Yan-Qing XU
China Journal of Chinese Materia Medica 2025;50(12):3214-3222
This paper aimed to explore the intestinal toxicity of Euphoriae Ebracteolata Radix(EER) before and after being processed with Mongolian medicine Hezi Decoction(HZD) and the toxicity-reducing mechanism of this processing method. The intestinal toxicity in rats treated with unprocessed EER and HZD-processed EER extracts via 95% ethanol was compared. The comparison was based on several indicators, including fecal volume, serum diamine oxidase(DAO) and D-lactate(D-LA) levels, the water content of various intestinal segments and their contents, and inflammatory factor levels in intestinal segments. Tandem mass tag(TMT) quantitative proteomics technology was employed to analyze the key proteins associated with changes in intestinal toxicity between unprocessed EER and HZD-processed EER. The results indicated that compared with the blank group, unprocessed EER significantly increased the fecal volume, serum DAO and D-LA levels, water content of the ileal segment and its contents, as well as the release levels of inflammatory factors, including tumor necrosis factor(TNF-α) and interleukin-1 beta(IL-1β) in the ileal segment of rats(P<0.05), indicating that EER can cause diarrhea, increase intestinal permeability, and induce intestinal inflammation. Compared with those in the unprocessed EER group, all indicators in the HZD-processed EER group were significantly reduced(P<0.05). The TMT quantitative proteomics analysis revealed that a total of 6 487 proteins were identified in the rat ileum tissue. Compared to the blank group, 182 proteins exhibited significant changes in the unprocessed EER group, while 907 proteins in the HZD-processed EER group showed significant changes. The intersection of the differential proteins between the two groups identified 38 common proteins. Among them, the protein levels of intestinal barrier tight junction protein claudin3, squalene monooxidase(Sqle), clusterin, Na~+/H~+ exchange regulatory cofactor NHE-RF3(Pdzk1), and Y+L amino acid transporter 1(Slc7a7) exhibited significant changes before and after processing, and these changes were closely related to intestinal barrier function. Compared with the blank group, the expression of claudin3, Pdzk1, and Slc7a7 in the raw product group was significantly down-regulated(P<0.05),while the expression of Sqle and clusterin was significantly up-regulated(P<0.05).Compared with the raw product group, the expression of claudin3, Pdzk1, and Slc7a7 in the processed product group of HZD was significantly up-regulated(P<0.05), while the expression of Sqle and clusterin was significantly down-regulated(P<0.05). Western blot was used to detect the expression level of claudin 3 in the ileum of rats in each group. The results show that compared to that in the blank group, the expression level of claudin 3 in the unprocessed EER group was significantly reduced(P<0.01); compared to that in the unprocessed EER group, the expression level of claudin 3 in the HZD-processed EER group was significantly increased(P<0.01). This finding aligned with the proteomic outcomes, indicating that claudin 3 protein levels could serve as a crucial indicator for intestinal damage caused by EER. In summary, HZD-processed EER can reduce EER's intestinal toxicity, and the primary mechanism for its alleviation of intestinal barrier damage is the regulation of the intestinal barrier tight junction protein claudin 3 and other intestinal-related proteins.
Animals
;
Drugs, Chinese Herbal/adverse effects*
;
Proteomics
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Intestines/drug effects*
;
Intestinal Mucosa/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
6.Analysis of labor function rehabilitation after total knee arthroplasty in patients with rheumatoid arthritis.
Tong KE ; Yang-Quan HAO ; Meng-Fei WANG ; Yu-Heng YAN ; Yuan-Zhen CAI ; Chao LU
China Journal of Orthopaedics and Traumatology 2025;38(6):594-600
OBJECTIVE:
To explore the functional rehabilitation of patients with rheumatoid arthritis (RA) after total knee arthroplasty (TKA).
METHODS:
A retrospective analysis was conducted on 101 patients who needed TKA due to rheumatoid arthritis (RA) involving both knees from January 2017 to December 2020, including 16 males and 85 females, aged from 41 to 65 years old with an average of (58.13±5.53) years old;body mass index (BMI) ranged from 16.88 to 33.33 kg·m-2 with an average of (23.16±3.49) kg·m-2;63 patients with grade 1, 29 patients with grade 2, and 9 patients with grade 3 according to classification of American Society of Anesthesiologists (ASA). According to the latest follow-up results at 12 months after operation, 82 patients returned to work and 19 patients did not return to work. Visual analogue scale(VAS) was used to evaluate the degree of pain relief before operation and 12 months after operation, and work, osteoarthritis and joint replacement questionnaire (WORQ) was used to evaluate knee joint activity status of all patients before and after operation, and the working ability index was used to evaluate working ability of all patients before operation and 12 months after operation. For the 82 patients who returned to work, the labor time stopped before operation and within 12 months after operation was compared, and the changes in labor grades, types of work and labor hours of patients before and after operation were recorded. For the 19 patients who did not return to work, the specific reasons for their non-return to work was analyzed;the postoperative satisfaction of patients was evaluated by using Likert satisfaction scale. All patients were followed up for at least 12 months. VAS was decreased from (6.49±0.59) before operation to (1.10±0.43) at 12 months after operation (P<0.05);for WORQ questionnaire survey, scores of walking, sitting posture, standing and stair climbing were increased from (1.07±0.35), (1.05±0.29), (1.06±0.34) and (1.14±0.42) before operation to (3.00±0.00), (2.87±0.33), (2.95±0.21) and (2.95±0.21) after operation, respectively, had statistically significant (P<0.05);the labor work index of all patients increased from 1.11±0.46 before operation to 2.99±0.10 at 12 months after operation, and the difference was statistically significant (P<0.05). Among the 82 patients who returned to work after operation, regarding the time of stopping labor, 81 patients stopped working within 3 months before operation, 1 patient stopped working for 4 to 6 months after operation, and the number of patients who stopped working was 81, 1, and 0 respectively. Forty patients returned to work within 3 months after operation, 4 to 6 months after operation for 29 patients, and 12 months after operation for 13 patients. 95.1% (78/82) of patients engaged in light labor before operation, and 85.4% (70/82) of patients engaged in moderate labor after operation. At 12 months after operation, the types of jobs and working hours available to all patients increased compared with those before operation. Among 19 patients who did not return to work after TKA, 7 patients had poor control of rheumatoid arthritis, 5 patients still felt pain, swelling and numbness on knee joint, 2 patients had retired, and 5 patients had other reasons. Eighty-six patients (85%) expressed great satisfaction with the postoperative working ability, 8 patients (8%) expressed satisfaction with the postoperative working ability, 6 patients (6%) expressed acceptance of postoperative working ability, and 1 patient (1%) expressed dissatisfaction with postoperative working ability.
CONCLUSION
TKA is an effective treatment option for patients with RA. After undergoing TKA, patients could significantly improve pain and functional activities of knee joint, and effectively enhance the quality of life and working ability. For patients whose rehabilitation labor capacity is not fully met, postoperative management and personalized rehabilitation treatment need to be strengthened to achieve the best rehabilitation effect.
Humans
;
Female
;
Male
;
Arthroplasty, Replacement, Knee/rehabilitation*
;
Arthritis, Rheumatoid/physiopathology*
;
Middle Aged
;
Aged
;
Retrospective Studies
;
Adult
8.Novel biallelic MCMDC2 variants were associated with meiotic arrest and nonobstructive azoospermia.
Hao-Wei BAI ; Na LI ; Yu-Xiang ZHANG ; Jia-Qiang LUO ; Ru-Hui TIAN ; Peng LI ; Yu-Hua HUANG ; Fu-Rong BAI ; Cun-Zhong DENG ; Fu-Jun ZHAO ; Ren MO ; Ning CHI ; Yu-Chuan ZHOU ; Zheng LI ; Chen-Cheng YAO ; Er-Lei ZHI
Asian Journal of Andrology 2025;27(2):268-275
Nonobstructive azoospermia (NOA), one of the most severe types of male infertility, etiology often remains unclear in most cases. Therefore, this study aimed to detect four biallelic detrimental variants (0.5%) in the minichromosome maintenance domain containing 2 ( MCMDC2 ) genes in 768 NOA patients by whole-exome sequencing (WES). Hematoxylin and eosin (H&E) demonstrated that MCMDC2 deleterious variants caused meiotic arrest in three patients (c.1360G>T, c.1956G>T, and c.685C>T) and hypospermatogenesis in one patient (c.94G>T), as further confirmed through immunofluorescence (IF) staining. The single-cell RNA sequencing data indicated that MCMDC2 was substantially expressed during spermatogenesis. The variants were confirmed as deleterious and responsible for patient infertility through bioinformatics and in vitro experimental analyses. The results revealed four MCMDC2 variants related to NOA, which contributes to the current perception of the function of MCMDC2 in male fertility and presents new perspectives on the genetic etiology of NOA.
Humans
;
Male
;
Azoospermia/genetics*
;
Meiosis/genetics*
;
Spermatogenesis/genetics*
;
Adult
;
Exome Sequencing
;
Microtubule-Associated Proteins/genetics*
;
Alleles
;
Infertility, Male/genetics*
9.The Enhancing Effects and Underlying Mechanism of Ionizing Radiation on Adipogenic Differentiation of Mesenchymal Stem Cells via Regulating Oxidative Stress Pathway.
Fu-Hao YU ; Bo-Feng YIN ; Pei-Lin LI ; Xiao-Tong LI ; Jia-Yi TIAN ; Run-Xiang XU ; Jie TANG ; Xiao-Yu ZHANG ; Wen-Jing ZHANG ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):246-254
OBJECTIVE:
To investigate the effects and underlying mechanism of ionizing radiation on the adipogenic of mesenchymal stem cells (MSCs).
METHODS:
Mouse MSCs were cultured in vitro and treated with 2 Gy and 6 Gy radiation with 60Co, and the radiation dose rate was 0.98 Gy/min. Bulk RNA-seq was performed on control and irradiated MSCs. The changes of adipogenic differentiation and oxidative stress pathways of MSC were revealed by bioinformatics analysis. Oil Red O staining was used to detect the adipogenic differentiation ability of MSCs in vitro, and real-time fluorescence quantitative PCR (qPCR) was used to detect the expression differences of key regulatory factors Cebpa, Lpl and Pparg after radiation treatment. At the same time, qPCR and Western blot were used to detect the effect of inhibition of Nrf2, a key factor of antioxidant stress pathway, on the expression of key regulatory factors of adipogenesis. Moreover, the species conservation of the irradiation response of human bone marrow MSCs and mouse MSC was determined by qPCR.
RESULTS:
Bulk RNA-seq suggested that ionizing radiation promotes adipogenic differentiation of MSCs and up-regulation of oxidative stress-related genes and pathways. The results of Oil Red O staining and qPCR showed that ionizing radiation promoted the adipogenesis of MSCs, with high expression of Cebpa, Lpl and Pparg, as well as oxidative stress-related gene Nrf2. Nrf2 pathway inhibitors could further enhance the adipogenesis of MSCs in bone marrow after radiation. Notably, the similar regulation of oxidative pathways and enhanced adipogenesis post irradiation were observed in human bone marrow MSCs. In addition, irradiation exposure led to up-regulated mRNA expression of interleukin-6 and down-regulated mRNA expression of colony stimulating factor 2 in human bone marrow MSCs.
CONCLUSION
Ionizing radiation promotes adipogenesis of MSCs in mice, and oxidative stress pathway participates in this effect, blocking Nrf2 further promotes the adipogenesis of MSCs. Additionally, irradiation activates oxidative pathways and promotes adipogenic differentiation of human bone marrow MSCs.
Mesenchymal Stem Cells/cytology*
;
Oxidative Stress/radiation effects*
;
Animals
;
Adipogenesis/radiation effects*
;
Mice
;
Radiation, Ionizing
;
Cell Differentiation/radiation effects*
;
Humans
;
NF-E2-Related Factor 2/metabolism*
;
PPAR gamma
;
Cells, Cultured
10.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*

Result Analysis
Print
Save
E-mail