1.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
2.Experimental study on Jianpi Qutan Formula regulating M1/M2 macrophage polarization to improve atherosclerosis.
Xiao-Meng HAN ; Yue LIU ; Yu ZHAO ; Mao-Sheng YU ; Mi TAN
China Journal of Chinese Materia Medica 2025;50(6):1610-1617
To investigate the mechanism of Jianpi Qutan Formula in regulating the balance between classically activated macrophages(M1) and alternatively activated macrophages(M2) in atherosclerotic plaques through phosphorylation and activation of the signal transducer and activator of transcription 6(STAT6), thereby reducing inflammation, increasing plaque stability, and exerting anti-atherosclerosis(AS) effects. An AS model was established by feeding apolipoprotein E(ApoE)~(-/-) mice with atherosclerotic chow for 8 weeks. The ApoE~(-/-) mice were randomly divided into a model group(Mod group), a Jianpi Qutan Formula group(JPQT group, 8.97 g·kg~(-1)), and a Atorvastatin Calcium Tablets group(ATO group, 1.3 mg·kg~(-1)) according to a random table method, with 10 mice in each group. Additionally, 10 male C57BL/6J mice of the same age, fed with a normal diet, were set as the control group(Con group). The JPQT and ATO groups received their respective treatments via oral gavage for 8 consecutive weeks, while the Con and Mod groups were administered an equivalent volume of saline. Body weight was continuously monitored, and after blood collection, total cholesterol(TC) and triglyceride(TG) levels in the serum of each group were compared. Hematoxylin-eosin(HE) staining and oil red O staining were used to observe plaque formation in aortic tissue. Enzyme-linked immunosorbent assay(ELISA) was employed to detect the expression levels of pro-inflammatory cytokines interleukin(IL)-6 and IL-12, as well as the anti-inflammatory cytokine IL-10. Immunofluorescence was used to detect the positive expression of aortic cluster of differentiation(CD)86 and CD206. Western blot analysis was conducted to detect the protein expression levels of aortic inducible nitric oxide synthase(iNOS), arginase 1(Arg1), STAT6, and p-STAT6. Compared to the Con group, the Mod group exhibited increased body weight and blood lipid levels, disordered aortic structure, significant AS plaque formation accompanied by extensive lipid deposition, and elevated serum levels of pro-inflammatory cytokines IL-6 and IL-12, as well as elevated CD86 and iNOS protein levels. In contrast, the serum levels of the anti-inflammatory cytokine IL-10, along with the protein expression levels of CD206, Arg1, and p-STAT6/STAT6, were reduced. Compared to the Mod group, the drug intervention groups showed improvements in body weight and lipid metabolism, with a more significant improvement in aortic structure, reduced lipid accumulation, decreased serum levels of IL-6 and IL-12, and lower CD86 and iNOS protein levels. Meanwhile, levels of IL-10, CD206, Arg1, and p-STAT6/STAT6 increased. Jianpi Qutan Formula improves AS by regulating the imbalance in M1/M2 macrophage polarization, and its mechanism is likely closely related to the activation of the STAT6 signaling pathway.
Animals
;
Atherosclerosis/metabolism*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Macrophages/cytology*
;
Mice, Inbred C57BL
;
STAT6 Transcription Factor/immunology*
;
Humans
;
Apolipoproteins E/genetics*
;
Interleukin-6/immunology*
3.Fresh Rehmanniae Radix regulates cholesterol metabolism disorder in mice fed with high-fat and high-cholesterol diet via FXR-mediated bile acid reabsorption.
Xin-Yu MENG ; Yan CHEN ; Li-Qin ZHAO ; Qing-Pu LIU ; Yong-Huan JIN ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(6):1670-1679
This study aims to investigate the potential effect of the water extract of fresh Rehmanniae Radix on hypercholesterolemia in mice that was induced by a high-fat and high-cholesterol diet and explore its possible mechanism from bile acid reabsorption. Male C57BL/6 mice were randomly assigned into the following groups: control, model, low-and high-dose(4 and 8 g·kg~(-1), respectively) fresh Rehmanniae Radix, and positive drug(simvastatin, 0.05 g·kg~(-1)). Other groups except the control group were fed with a high-fat and high-cholesterol diet for 6 consecutive weeks to induce hypercholesterolemia. From the 6th week, mice were administrated with corresponding drugs daily via gavage for additional 6 weeks, while continuing to be fed with a high-fat and high-cholesterol diet. Serum levels of total cholesterol(TC), triglycerides(TG), low density lipoprotein-cholesterol(LDL-c), high density lipoprotein-cholesterol(HDL-c), and total bile acid(TBA), as well as liver TC and TG levels and fecal TBA level, were determined by commercial assay kits. Hematoxylin-eosin(HE) staining, oil red O staining, and transmission electron microscopy were performed to observe the pathological changes in the liver. Three livers samples were randomly selected from each of the control, model, and high-dose fresh Rehmanniae Radix groups for high-throughput transcriptome sequencing. Differentially expressed genes were mined and KEGG pathway enrichment analysis was performed to predict the key pathways and target genes of the water extract of fresh Rehmanniae Radix in the treatment of hypercholesterolemia. RT-qPCR was employed to measure the mRNA levels of cholesterol 7α-hydroxylase(CYP7A1) and cholesterol 27α-hydroxylase(CYP27A1) in the liver. Western blot was employed to determine the protein levels of CYP7A1 and CYP27A1 in the liver as well as farnesoid X receptor(FXR), apical sodium-dependent bile acid transporter(ASBT), and ileum bile acid-binding protein(I-BABP) in the ileum. The results showed that the water extract of fresh Rehmanniae Radix significantly lowered the levels of TC and TG in the serum and liver, as well as the level of LDL-c in the serum. Conversely, it elevated the level of HDL-c in the serum and TBA in feces. No significant difference was observed in the level of TBA in the serum among groups. HE staining, oil red O staining, and transmission electron microscopy showed that the water extract reduced the accumulation of lipid droplets in the liver. Further mechanism studies revealed that the water extract of fresh Rehmanniae Radix significantly down-regulated the protein levels of FXR and bile acid reabsorption-related proteins ASBT and I-BABP. Additionally, it enhanced CYP7A1 and CYP27A1, the key enzymes involved in bile acid synthesis. Therefore, it is hypothesized that the water extract of fresh Rehmanniae Radix may exert an anti-hypercholesterolemic effect by regulating FXR/ASBT/I-BABP signaling, inhibiting bile acid reabsorption, and increasing bile acid excretion, thus facilitating the conversion of cholesterol to bile acids.
Animals
;
Male
;
Bile Acids and Salts/metabolism*
;
Mice, Inbred C57BL
;
Mice
;
Diet, High-Fat/adverse effects*
;
Cholesterol/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hypercholesterolemia/genetics*
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Rehmannia/chemistry*
;
Liver/drug effects*
;
Humans
;
Cholesterol 7-alpha-Hydroxylase/genetics*
;
Plant Extracts
4.Advances in pathogenesis of asthma airway remodeling and intervention mechanism of traditional Chinese medicine.
Ya-Sheng DENG ; Jiang LIN ; Yu-Jiang XI ; Yan-Ping FAN ; Wen-Yue LI ; Yong-Hui LIU ; Zhao-Bing NI ; Xi MING
China Journal of Chinese Materia Medica 2025;50(8):2050-2070
Asthma, a chronic inflammatory airway disease with a high global prevalence, has a complex pathogenesis, in which airway remodeling plays a key role in the chronicity of the disease. Airway remodeling involves a series of pathophysiological changes, including airway epithelial damage, proliferation of mucous glands and goblet cells, subepithelial fibrosis, proliferation and migration of airway smooth muscle cells, and epithelial-mesenchymal transition. These complex pathological changes significantly increase airway resistance and responsiveness, forming an important pathological basis for refractory asthma. Currently, the regulatory mechanisms of airway remodeling focus on signaling pathways and regulatory targets. The signaling pathways include phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt), nuclear factor-κB(NF-κB), transforming growth factor-β1(TGF-β1)/Smads, and mitogen-activated protein kinase(MAPK). The regulatory targets include microRNAs(miRNAs), competing endogenous RNAs(ceRNAs), long non-coding RNAs(lncRNAs), and circular RNAs(circRNAs). Key proteins involved in these processes include TGF-β1, silencing information regulator 2-related enzyme 1(SIRT1), chitinase 3-like protein 1(YKL-40), and adenosine deaminase-metalloproteinase 33(ADAM33). In recent years, the potential of traditional Chinese medicine in the treatment of asthma has become increasingly evident. Its active ingredients, extracts, and complexes can inhibit airway remodeling in asthma through multiple pathways, demonstrating a variety of effects, including anti-inflammatory actions, inhibition of smooth muscle cell proliferation and migration, regulation of epithelial-mesenchymal transition, attenuation of fibrosis and basement membrane thickening, reduction of mucus secretion, inhibition of vascular remodeling, modulation of immune imbalance, and antioxidative stress. This paper aims to provide an in-depth analysis of the pathogenesis and therapeutic targets of asthma, offering theoretical support and innovative strategies for clinical research and drug development in the treatment of asthma.
Asthma/pathology*
;
Humans
;
Airway Remodeling/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Animals
;
Signal Transduction/drug effects*
;
Medicine, Chinese Traditional
;
Transforming Growth Factor beta1/metabolism*
5.Intraspecific variation of Forsythia suspensa chloroplast genome.
Yu-Han LI ; Lin-Lin CAO ; Chang GUO ; Yi-Heng WANG ; Dan LIU ; Jia-Hui SUN ; Sheng WANG ; Gang-Min ZHANG ; Wen-Pan DONG
China Journal of Chinese Materia Medica 2025;50(8):2108-2115
Forsythia suspensa is a traditional Chinese medicine and a commonly used landscaping plant. Its dried fruit is used in medicine for its functions of clearing heat, removing toxins, reducing swelling, dissipating masses, and dispersing wind and heat. It possesses extremely high medicinal and economic value. However, the genetic differentiation and diversity of its wild populations remain unclear. In this study, chloroplast genome sequences were obtained from 15 wild individuals of F. suspensa using high-throughput sequencing technology. The sequence characteristics and intraspecific variations were analyzed. The results were as follows:(1) The full length of the F. suspensa chloroplast genome ranged from 156 184 to 156 479 bp, comprising a large single-copy region, a small single-copy region, and two inverted repeat regions. The chloroplast genome encoded a total of 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes.(2) A total of 166-174 SSR loci, 792 SNV loci, and 63 InDel loci were identified in the F. suspensa chloroplast genome, indicating considerable genetic variation among individuals.(3) Population structure analysis revealed that F. suspensa could be divided into five or six groups. Both the population structure analysis and phylogenetic reconstruction results indicated significant genetic variation within the wild populations of F. suspensa, with no obvious correlation between intraspecific genetic differentiation and geographical distribution. This study provides new insights into the genetic diversity and differentiation within F. suspensa species and offers additional references for the conservation of species diversity and the utilization of germplasm resources in wild F. suspensa.
Genome, Chloroplast
;
Forsythia/classification*
;
Phylogeny
;
Genetic Variation
;
Chloroplasts/genetics*
;
Microsatellite Repeats
6.A new amide alkaloid from Cannabis Fructus.
Rui-Wen XU ; Yong-Zhuo ZHAO ; Yu-Guo MA ; Hui LIU ; Yan-Jun SUN ; Wei-Sheng FENG ; Hui CHEN
China Journal of Chinese Materia Medica 2025;50(11):3043-3048
Eight amide alkaloids(1-8) were isolated from the 70% ethanol extract of Cannabis Fructus using silica gel column chromatography, MCI column chromatography, and semi-preparative high-performance liquid chromatography(HPLC). Their structures were identified as hempspiramide A(1), N-[(4-hydroxyphenyl)ethyl]formamide(2), N-acetyltyramide(3), N-trans-p-coumaroyltyramine(4), N-trans-caffeoyltyramine(5), N-trans-feruloyltyramine(6), N-cis-p-coumaroyltyramine(7), N-cis-feruloyltyramine(8) by using spectroscopic methods such as NMR and MS. Among these compounds, compound 1 was a new amide alkaloid, while compounds 2 and 3 were isolated from Cannabis Fructus for the first time. Some of the isolates were assayed for their α-glucosidase inhibitory activity. Compounds 5-7 displayed significant inhibitory activity against α-glucosidase with IC_(50) values ranging from 1.07 to 4.63 μmol·L~(-1).
Cannabis/chemistry*
;
Alkaloids/pharmacology*
;
Amides/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
;
Fruit/chemistry*
;
Molecular Structure
;
alpha-Glucosidases/chemistry*
;
Chromatography, High Pressure Liquid
7.Comparison between sinking and floating fresh Rehmanniae Radix samples by UHPLC-Q-Orbitrap HRMS, fingerprinting, and chemometrics.
Shi-Long LIU ; Hong-Wei ZHANG ; Zhen-Ling ZHANG ; Han-Ting JIA ; Zhi-Jun GUO ; Rui-Sheng WANG ; Hong-Wei ZHANG ; Shuo WANG ; Yi-Jian ZHONG
China Journal of Chinese Materia Medica 2025;50(14):3918-3929
This study aims to explore the scientific connotation of sinking Rehmanniae Radix has the best quality and compare the quality between floating and sinking fresh Rehmanniae Radix samples. Ultra-performance liquid chromatography tandem quadrupole electrostatic field Orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) was employed to detect the chemical components in floating and sinking fresh Rehmanniae Radix samples. The fingerprint of fresh Rehmanniae Radix was established by high performance liquid chromatography(HPLC), and four index components were determined simultaneously. The cluster analysis, principal component analysis(PCA), and orthogonal partial least squares-discriminant analysis(OPLS-DA) were conducted to compare the quality of floating and sinking fresh Rehmanniae Radix samples. An evaporative light-scattering detector was used to compare the content of five sugars. The extract yield and drying rate were determined, and the quality connotation of sinking Rehmanniae Radix has the best quality was explained by multiple indicators. A total of 41 components were preliminarily identified from fresh Rehmanniae Radix by UHPLC-Q-Orbitrap HRMS, including 7 iridoid glycosides, 9 phenylethanol glycosides, 6 amino acids, 4 sugars, 3 phenolic acids, 5 nucleosides, 3 organic acids, 1 ionone, 1 furan, 1 coumarin, and 1 phenylpropanoid. The results showed that the main chemical components were consistent between floating and sinking fresh Rehmanniae Radix. Nine common peaks were identified in the fingerprints of 15 batches of floating and sinking fresh Rehmanniae Radix samples, and the similarity of fingerprints was greater than 0.9. The cluster analysis, PCA, and OPLS-DA classified floating and sinking fresh Rehmanniae Radix sasmples into two categories, indicating differences in the quality between them. The total content of catalpol, rehmannioside D, ajugol, and verbascoside in sinking fresh Rehmanniae Radix samples was higher than that in floating samples of the same batch and specification, and the main differential component was catalpol. The total content of fructose, glucose, sucrose, raffinose, and stachyose in sinking fresh Rehmanniae Radix samples was higher than that in floating samples of the same batch and specification, and the main differential component was stachyose. The extract yield and drying rate of the sinking samples were higher than those of floating samples. This study preliminarily showed that floating and sinking fresh Rehmanniae Radix samples had the same components but great differences in the content of medicinal substance basis. The total content of four glycosides and five sugars, extract yield, and drying rate of sinking fresh Rehmanniae Radix samples is higher than that of floating samples of the same batch and specification. These findings, to a certain extent, explains the scientificity of sinking Rehmanniae Radix has the best quality recorded in ancient books and provide a reference for the quality control and clinical application of fresh Rehmanniae Radix.
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Rehmannia/chemistry*
;
Chemometrics
;
Mass Spectrometry/methods*
;
Quality Control
;
Principal Component Analysis
;
Plant Extracts
8.Identification of critical quality attributes related to property and flavor of Jianwei Xiaoshi Tablets based on T1R2/T1R3/TRPV1-HEMT biosensor.
Dong-Hong LIU ; Yan-Yu HAN ; Jing WANG ; Hai-Yang LI ; Xin-Yu GUO ; Hui-Min FENG ; Han HE ; Shuo-Shuo XU ; Zhi-Jian ZHONG ; Zhi-Sheng WU
China Journal of Chinese Materia Medica 2025;50(14):3930-3937
The quality of traditional Chinese medicine(TCM) is a critical foundation for ensuring the stability of its efficacy, as well as the safety and effectiveness of its clinical use. The identification of critical quality attributes(CQAs) is one of the core components of TCM preparation quality control. This study focuses on Jianwei Xiaoshi Tablets and explores their CQAs related to property and flavor from the perspective of taste receptor proteins. Three taste receptor proteins, T1R2, T1R3, and TRPV1, were selected, and a biosensor based on high-electron-mobility transistor(HEMT) was constructed to detect the interactions between Jianwei Xiaoshi Tablets and taste receptor proteins. Simultaneously, liquid chromatography-mass spectrometry(LC-MS) technology was used to analyze the chemical composition of Jianwei Xiaoshi Tablets. In examining the interaction strength, the results indicated that the interaction between Jianwei Xiaoshi Tablets and TRPV1 protein was the strongest, followed by T1R3, with the interaction with T1R2 being relatively weaker. By combining biosensing technology with LC-MS, 16 chemical components were identified from Jianwei Xiaoshi Tablets, among which six were selected as CQAs for sweetness and seven for pungency. Further validation experiments demonstrated that CQAs such as hesperidin and hesperetin had strong interactions with their corresponding taste receptor proteins. Through the combined use of multiple technological approaches, this study successfully determined the property and flavor-related CQAs of Jianwei Xiaoshi Tablets. It provides novel ideas and approach for the identification of CQAs in TCM preparations and offers comprehensive theoretical support for TCM quality control, contributing to the improvement and development of TCM preparation quality control systems.
Drugs, Chinese Herbal/chemistry*
;
Biosensing Techniques/methods*
;
TRPV Cation Channels/chemistry*
;
Tablets/chemistry*
;
Receptors, G-Protein-Coupled/genetics*
;
Quality Control
;
Taste
;
Humans
;
Mass Spectrometry
9.Development of intelligent equipment for rapid microbial detection of Atractylodis Macrocephalae Rhizoma decoction pieces based on measurement technology for traditional Chinese medicine manufacturing.
Yang LIU ; Wu-Zhen QI ; Yu-Tong WU ; Shan-Xi ZHU ; Xiao-Jun ZHAO ; Qia-Tong XIE ; Yu-Feng GUO ; Jing ZHAO ; Nan LI ; Shi-Jun WANG ; Qi-Hui SUN ; Zhi-Sheng WU
China Journal of Chinese Materia Medica 2025;50(16):4610-4618
Microbial detection and control of traditional Chinese medicine(TCM) decoction pieces are crucial for the quality control of TCM preparations. It is also a key area of research in the measurement technology and equipment development for TCM manufacturing. Guided by TCM manufacturing measurement methodologies, this study presented a design of a novel portable microbial detection device, using Atractylodis Macrocephalae Rhizoma decoction pieces as a demonstration. Immunomagnetic separation technology was employed for specific isolation and labeling of target microorganisms. Enzymatic signal amplification was utilized to convert weak biological signals into colorimetric signals, constructing an optical biosensor. A self-developed smartphone APP was further applied to analyze the colorimetric signals and quantify target concentrations. A portable and automated detection system based on Arduino microcontroller was developed to automatically perform target microbial separation/extraction, as well as mimetic enzyme labeling and catalytic reactions. The developed equipment specifically focuses on the rapid and quantitative microbial analysis of TCM active pharmaceutical ingredients, intermediates in TCM manufacturing, and final TCM products. Experimental results demonstrate that the equipment could detect Salmonella in samples within 2 h, with a detection limit as low as 5.1 × 10~3 CFU·mL~(-1). The equipment enables the rapid detection of microorganisms in TCM decoction pieces, providing a potential technical solution for on-site rapid screening of microbial contamination indicators in TCM. It has broad application prospects in measurement technology for TCM manufacturing and offers strong technical support for the modernization, industrialization, and intelligent development of TCM.
Drugs, Chinese Herbal/analysis*
;
Atractylodes/microbiology*
;
Rhizome/microbiology*
;
Biosensing Techniques/methods*
;
Medicine, Chinese Traditional
;
Colorimetry/instrumentation*
;
Quality Control
10.Discovery and proof-of-concept study of a novel highly selective sigma-1 receptor agonist for antipsychotic drug development.
Wanyu TANG ; Zhixue MA ; Bang LI ; Zhexiang YU ; Xiaobao ZHAO ; Huicui YANG ; Jian HU ; Sheng TIAN ; Linghan GU ; Jiaojiao CHEN ; Xing ZOU ; Qi WANG ; Fan CHEN ; Guangying LI ; Chaonan ZHENG ; Shuliu GAO ; Wenjing LIU ; Yue LI ; Wenhua ZHENG ; Mingmei WANG ; Na YE ; Xuechu ZHEN
Acta Pharmaceutica Sinica B 2025;15(10):5346-5365
Sigma-1 receptor (σ 1R) has become a focus point of drug discovery for central nervous system (CNS) diseases. A series of novel 1-phenylethan-1-one O-(2-aminoethyl) oxime derivatives were synthesized. In vitro biological evaluation led to the identification of 1a, 14a, 15d and 16d as the most high-affinity (K i < 4 nmol/L) and selective σ 1R agonists. Among these, 15d, the most metabolically stable derivative exhibited high selectivity for σ 1R in relation to σ 2R and 52 other human targets. In addition to low CYP450 inhibition and induction, 15d also exhibited high brain permeability and excellent oral bioavailability. Importantly, 15d demonstrated effective antipsychotic potency, particularly for alleviating negative symptoms and improving cognitive impairment in experimental animal models, both of which are major challenges for schizophrenia treatment. Moreover, 15d produced no significant extrapyramidal symptoms, exhibiting superior pharmacological profiles in relation to current antipsychotic drugs. Mechanistically, 15d inhibited GSK3β and enhanced prefrontal BDNF expression and excitatory synaptic transmission in pyramidal neurons. Collectively, these in vivo proof-of-concept findings provide substantial experimental evidence to demonstrate that modulating σ 1R represents a potential new therapeutic approach for schizophrenia. The novel chemical entity along with its favorable drug-like and pharmacological profile of 15d renders it a promising candidate for treating schizophrenia.

Result Analysis
Print
Save
E-mail