1.Multidimensional analysis of accuracy of CTU, contrast-enhanced MRI and CEUS in qualitative diagnosis of renal space-occupying lesions
Linjie WU ; Ying YU ; Xiaojie BAI ; Zihao QI ; Hang ZHENG ; Zhongqiang GUO
Journal of Modern Urology 2025;30(1):48-52
[Objective] To compare the diagnostic accuracy of three imaging modalities, inlducing CT urography (CTU), contrast-enhanced MRI (CE-MRI), and contrast-enhanced ultrasound (CEUS) in the qualitative diagnosis of renal space-occupying lesions. [Methods] A retrospective analysis was performed on 542 patients with renal lesions confirmed by surgical pathology in our hospital during Jan.2019 and May 2024.The diagnostic results of CTU, CE-MRI and CEUS were compared and analyzed based on the patients' clinical and pathological data. [Results] The diagnostic accuracy rate of CTU, CE-MRI and CEUS were 84.50%, 83.14% and 86.14%, respectively.For the 161 patients who underwent all three examinations, CEUS was significantly more accurate than CTU (84.16% vs. 77.02%, P=0.018), while there was no significant difference between CTU or CEUS and CE-MRI (79.81%) (P>0.05). Further analysis found that for lesions ≤4 cm, the accuracy of the three examinations was as follows: CEUS=CTU 79.55%, CE-MRI 76.14%, with no significant difference (P>0.05). However, for lesions >4 cm, CEUS ranked the first, followed by CE-MRI and CTU (89.73% vs. 84.25% vs. 73.97%), and CEUS and CE-MRI were better than CTU (P<0.05). Additionally, for the diagnosis of clear cell renal carcinoma and benign renal space-occupying lesions, there was no statistically significant difference among the three imaging modalities (P>0.05), while for the qualitative diagnosis of non-clear cell renal carcinoma, CEUS ranked the first, followed by CE-MRI and CTU (83.87% vs. 74.19% vs. 56.45%), and CE-MRI and CEUS were better than CTU (P<0.05). [Conclusion] All of them have important diagnostic value, and the appropriate selection should be based on patients' specifc conditions.CEUS and CE-MRI are more accurate in the qualitative diagnosis of renal space-occupying lesions than CTU, especially for large lesions and non-clear cell carcinoma.
2.DIA Proteomics Reveals Mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis Extract in Treating α-Syn Transgenic Parkinson's Disease in Mice
Qi ZHENG ; Yi LU ; Donghua YU ; Liangyou ZHAO ; Chunsheng LIN ; Fang LU ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):40-50
ObjectiveTo investigate the mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis extract (ASH) in treating Parkinson's disease (PD) in mice by Data-Independent Acquisition (DIA) proteomics. MethodsThe α-Synuclein (α-Syn) transgenic PD mice were selected as suitable models for PD, and they were randomly assigned into PD, ASH (61.25 mg·kg-1), and Madopar (97.5 mg·kg-1) groups. Male C57BL/6 mice of the same age were selected as the control group, with eight mice in each group. Mice were administrated with corresponding drugs by gavage once a day for 20 days. The pole climbing time and the number of autonomic activities were recorded to evaluate the exercise ability of mice. Hematoxylin-eosin staining was employed to observe neuronal changes in the substantia nigra of PD mice. Immunohistochemistry (IHC) was employed to measure the tyrosine hydroxylase (TH) activity in the substantia nigra and assess the areal density of α-Syn in the striatum. DIA proteomics was used to compare protein expression in the substantia nigra between groups. IHC was utilized to validate key differentially expressed proteins, including Lactotransferrin, Notch2, Ndrg2, and TMEM 166. The cell counting kit-8 (CCK-8) method was used to investigate the effect of ASH on the viability of PD cells with overexpression of α-Syn. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the protein and mRNA levels of Lactotransferrin, Notch2, Ndrg2, and TMEM 166 in PD cells. ResultsCompared with the control group, the model group showed prolonged pole climbing time, diminished coordination ability, reduced autonomic activities (P<0.01), and reduced swelling neurons. Compared with the model group, ASH and Madopar reduced the climbing time, increased autonomic activities (P<0.01), and ameliorated neuronal damage. Compared with the control group, the model group showed a decrease in TH activity in the substantia nigra and an increase in α-Syn accumulation in the striatum (P<0.01). Compared with the model group, the ASH group showed an increase in TH activity and a reduction in α-Syn accumulation (P<0.05). DIA proteomics revealed a total of 464 differentially expressed proteins in the model group compared with the control group, with 323 proteins being up-regulated and 141 down-regulated. A total of 262 differentially expressed proteins were screened in the ASH group compared with the model group, including 85 proteins being up-regulated and 177 down-regulated. Kyoto encylopedia of genes and genomes (KEGG) pathway analysis indicated that ASH primarily regulated the Notch signaling pathway. The model group showed up-regulation in protein levels of Notch2, Ndrg2, and TMEM 166 and down-regulation in the protein level of Lactotransferrin compared with the control group (P<0.01). Compared with the model group, ASH down-regulated the protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.05) while up-regulating the protein level of Lactotransferrin (P<0.01). The IHC results corroborated the proteomics findings. The cell experiment results showed that compared with the control group, the modeling up-regulated the mRNA and protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.01), while down-regulating the mRNA and protein levels of Lactotransferrin (P<0.01). Compared with the model group, ASH reduced the mRNA and protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.01), while increasing the mRNA and protein levels of Lactotransferrin (P<0.05, P<0.01). ConclusionASH may Synergistically inhibit the Notch signaling pathway and mitigate neuronal damage by down-regulating the expression of Notch2 and Ndrg2. Additionally, by up-regulating the expression of Lactotransferrin and down-regulating the expression of TMEM166, ASH can address brain iron accumulation, intervene in ferroptosis, inhibit mitophagy, and mitigate reactive oxygen species damage, thereby protecting nerve cells and contributing to the treatment of PD.
3.Establishment and evaluation of pendulum-like modified rat abdominal heart heterotopic transplantation model
Hongtao TANG ; Caihan LI ; Xiangyun ZHENG ; Senlin HOU ; Weiyang CHEN ; Zengwei YU ; Yabo WANG ; Dong TIAN ; Qi AN
Organ Transplantation 2025;16(2):280-287
Objective To introduce the modeling method of pendulum-like modified rat abdominal heart heterotopic transplantation model and evaluate the quality of the model. Methods An operator without transplantation experience performed 15 consecutive models, recorded the time of each step, changes in body weight and modified Stanford scores, and calculated the surgical success rate, postoperative 1-week survival rate and technical success rate. Ultrasound examinations was performed in 1 week postoperatively. Results The times for donor heart acquisition, donor heart processing, recipient preparation and transplantation anastomosis were (14.3±1.4) min, (3.5±0.6) min, (13.6±2.1) min and (38.3±5.2) min respectively. The surgical success rate was 87% (13/15), and the survival rate 1 week after operative was 100% (13/13). The improved Stanford score indicated a technical success rate of 92% (12/13), and the postoperative 1-week ultrasound examination showed that grafts with Stanford scores ≥3 had detectable pulsation and blood flow signals. Conclusions The pendulum-like modified rat abdominal heart heterotopic transplantation improved model further optimizes the operational steps with a high success rate and stable quality, may be chosen as a modeling option for basic research in heart transplantation in the future.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
6.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
7.Research progress in effect of traditional Chinese medicine on aerobic glycolysis in colorectal cancer.
Xu MA ; Sheng-Long LI ; Guang-Rong ZHENG ; Da-Cheng TIAN ; Gang-Gang LU ; Jie GAO ; Yu-Qi AN ; Li-Yuan CAO ; Liang LI ; Xiao-Yong TANG
China Journal of Chinese Materia Medica 2025;50(6):1496-1506
Colorectal cancer(CRC) is a common malignant tumor worldwide. Due to the treatment intolerance and side effects, CRC rank the top among various cancers regarding the incidence and mortality rates. Therefore, exploring new therapies is of great significance for the treatment of CRC. Aerobic glycolysis(AEG) plays an important role in the microenvironment formation, proliferation, metastasis, and recurrence of CRC and other tumor cells. It has been confirmed that intervening in the AEG pathway can effectively curb CRC. The active ingredients and compound prescriptions of traditional Chinese medicine(TCM) can effectively inhibit the proliferation, metastasis, and drug resistance and regulate the apoptosis of tumor cells by modulating AEG-associated transport proteins [eg, glucose transporters(GLUT)], key enzymes [hexokinase(HK) and phosphofructokinase(PFK)], key genes [hypoxia-inducible factor 1(HIF-1) and oncogene(c-Myc)], and signaling pathways(MET/PI3K/Akt/mTOR). Accordingly, they can treat CRC, reduce the recurrence, and improve the prognosis of CRC. Although AEG plays a key role in the development and progression of CRC, the specific mechanisms are not yet fully understood. Therefore, this article delves into the intrinsic connection of the targets and mechanisms of the AEG pathway with CRC from the perspective of tumor cell glycolysis and explores how active ingredients(oxymatrine, kaempferol, and dioscin) and compound prescriptions(Quxie Capsules, Jiedu Sangen Decoction, and Xianlian Jiedu Prescription) of TCM treat CRC by intervening in the AEG pathway. Additionally, this article explores the shortcomings in the current research, aiming to provide reliable targets and a theoretical basis for treating CRC with TCM.
Humans
;
Colorectal Neoplasms/genetics*
;
Drugs, Chinese Herbal/therapeutic use*
;
Glycolysis/drug effects*
;
Animals
;
Medicine, Chinese Traditional
;
Signal Transduction/drug effects*
8.Tanreqing Capsules protect lung and gut of mice infected with influenza virus via "lung-gut axis".
Nai-Fan DUAN ; Yuan-Yuan YU ; Yu-Rong HE ; Feng CHEN ; Lin-Qiong ZHOU ; Ya-Lan LI ; Shi-Qi SUN ; Yan XUE ; Xing ZHANG ; Gui-Hua XU ; Yue-Juan ZHENG ; Wei ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2270-2281
This study aims to explore the mechanism of lung and gut protection by Tanreqing Capsules on the mice infected with influenza virus based on "the lung-gut axis". A total of 110 C57BL/6J mice were randomized into control group, model group, oseltamivir group, and low-and high-dose Tanreqing Capsules groups. Ten mice in each group underwent body weight protection experiments, and the remaining 12 mice underwent experiments for mechanism exploration. Mice were infected with influenza virus A/Puerto Rico/08/1934(PR8) via nasal inhalation for the modeling. The lung tissue was collected on day 3 after gavage, and the lung tissue, colon tissue, and feces were collected on day 7 after gavage for subsequent testing. The results showed that Tanreqing Capsules alleviated the body weight reduction and increased the survival rate caused by PR8 infection. Compared with model group, Tanreqing Capsules can alleviate the lung injury by reducing the lung index, alleviating inflammation and edema in the lung tissue, down-regulating viral gene expression at the late stage of infection, reducing the percentage of neutrophils, and increasing the percentage of T cells. Tanreqing Capsules relieved the gut injury by restoring the colon length, increasing intestinal lumen mucin secretion, alleviating intestinal inflammation, and reducing goblet cell destruction. The gut microbiota analysis showed that Tanreqing Capsules increased species diversity compared with model group. At the phylum level, Tanreqing Capsules significantly increased the abundance of Firmicutes and Actinobacteria, while reducing the abundance of Bacteroidota and Proteobacteria to maintain gut microbiota balance. At the genus level, Tanreqing Capsules significantly increased the abundance of unclassified_f_Lachnospiraceae while reducing the abundance of Bacteroides, Eubacterium, and Phocaeicola to maintain gut microbiota balance. In conclusion, Tanreqing Capsules can alleviate mouse lung and gut injury caused by influenza virus infection and restore the balance of gut microbiota. Treating influenza from the lung and gut can provide new ideas for clinical practice.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Lung/metabolism*
;
Mice, Inbred C57BL
;
Capsules
;
Orthomyxoviridae Infections/virology*
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Humans
;
Female
;
Influenza A virus/physiology*
;
Influenza, Human/virology*
9.Studies on the best production mode of traditional Chinese medicine driven by artificial intelligence and its engineering application.
Zheng LI ; Ning-Tao CHENG ; Xiao-Ping ZHAO ; Yi TAO ; Qi-Long XUE ; Xing-Chu GONG ; Yang YU ; Jie-Qiang ZHU ; Yi WANG
China Journal of Chinese Materia Medica 2025;50(12):3197-3203
The traditional Chinese medicine(TCM) industry is a crucial part of China's pharmaceutical sector and plays a strategic role in ensuring public health and promoting economic and social development. In response to the practical demand for high-quality development of the TCM industry, this paper focused on the bottlenecks encountered during the digital and intelligent transformation of TCM production systems. Specifically, it explored technical strategies and methodologies for constructing the best TCM production mode. An innovative artificial intelligence(AI)-centered technical architecture for TCM production was proposed, focusing on key aspects of production management including process modeling, state evaluation, and decision optimization. Furthermore, a series of critical technologies were developed to realize the best TCM production mode. Finally, a novel AI-driven TCM production mode characterized by a closed-loop system of "measurement-modeling-decision-execution" was presented through engineering case studies. This study is expected to provide a technological pathway for developing new quality productive forces within the TCM industry.
Artificial Intelligence
;
Drugs, Chinese Herbal
;
Medicine, Chinese Traditional/methods*
;
Humans
10.A novel homozygous mutation of CFAP300 identified in a Chinese patient with primary ciliary dyskinesia and infertility.
Zheng ZHOU ; Qi QI ; Wen-Hua WANG ; Jie DONG ; Juan-Juan XU ; Yu-Ming FENG ; Zhi-Chuan ZOU ; Li CHEN ; Jin-Zhao MA ; Bing YAO
Asian Journal of Andrology 2025;27(1):113-119
Primary ciliary dyskinesia (PCD) is a clinically rare, genetically and phenotypically heterogeneous condition characterized by chronic respiratory tract infections, male infertility, tympanitis, and laterality abnormalities. PCD is typically resulted from variants in genes encoding assembly or structural proteins that are indispensable for the movement of motile cilia. Here, we identified a novel nonsense mutation, c.466G>T, in cilia- and flagella-associated protein 300 ( CFAP300 ) resulting in a stop codon (p.Glu156*) through whole-exome sequencing (WES). The proband had a PCD phenotype with laterality defects and immotile sperm flagella displaying a combined loss of the inner dynein arm (IDA) and outer dynein arm (ODA). Bioinformatic programs predicted that the mutation is deleterious. Successful pregnancy was achieved through intracytoplasmic sperm injection (ICSI). Our results expand the spectrum of CFAP300 variants in PCD and provide reproductive guidance for infertile couples suffering from PCD caused by them.
Adult
;
Female
;
Humans
;
Male
;
Pregnancy
;
China
;
Ciliary Motility Disorders/genetics*
;
Codon, Nonsense
;
East Asian People/genetics*
;
Exome Sequencing
;
Homozygote
;
Infertility, Male/genetics*
;
Kartagener Syndrome/genetics*
;
Pedigree
;
Sperm Injections, Intracytoplasmic
;
Cytoskeletal Proteins/genetics*

Result Analysis
Print
Save
E-mail