1.Mechanism of Different Dosage Forms of Kaixinsan in Improving Mitochondrial Function for Prevention and Treatment of Cognitive Disorder Based on AMPK/PGC-1α/SIRT3 Pathway
Shuyue KANG ; Yanzi YU ; Jiaqun SUN ; Wenxuan CHEN ; Yaqin YANG ; Qi WANG ; Weirong LI ; Limei YAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):15-24
ObjectiveTo explore the effects of different dosage forms of Kaixinsan (KXS) on the morphology and function of mitochondria in rat models of Alzheimer's disease (AD) and potential mechanisms of action. MethodsMale SD rats were randomly assigned to a sham group, model group, treatment groups receiving KXS decoction, powders, and granules (3.08 g·kg-1), as well as donepezil group (0.51×10-3 g·kg-1), with 10 rats in each group. AD model was created using intracerebroventricular injection of streptozocin (STZ). After 30 days of administration, behavioral assessments were conducted, and mitochondrial morphology was observed using transmission electron microscopy. Mitochondrial respiratory chain complex content was measured via enzyme-linked immunosorbent assay (ELISA). Changes in mitochondrial membrane potential were measured via JC-1 staining, and superoxide dismutase (SOD) activity and reactive oxygen species (ROS) levels were measured via biochemical assays. The mRNA expression of adenosine 5'-monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and silent information regulator 3 (SIRT3) was detected by real-time fluorescent quantitative polymerase chain reaction (Real-time PCR), and Western blot was used to examine the protein expression levels of optic atrophy protein1 (OPA1), mitochondrial fission protein 1 (FIS1), AMPK, p-AMPK, PGC-1α, and SIRT3. ResultsCompared with the sham group, rats in the model group had significantly lower recognition index, spontaneous alternation rate, escape latency, number of platform crossings, time spent in the target quadrant, and percentage of distance traveled in the target quadrant distance (P<0.05, P<0.01). Significant mitochondrial damage was observed in the hippocampal tissue, with a marked decrease in mitochondrial respiratory chain complex content (P<0.01) and reduced mitochondrial membrane potential (P<0.05). Additionally, the SOD activity was reduced, while ROS levels were elevated (P<0.01). The mRNA expression of PGC-1α and SIRT3 was significantly downregulated (P<0.01), along with decreased protein expression levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, whereas FIS1 protein expression was significantly upregulated (P<0.05, P<0.01). Compared with the model group, rats in KXS-treated groups (various dosage forms) showed significant improvement in behavioral indexes (P<0.05, P<0.01), reduced hippocampal mitochondrial damage, and more organized mitochondrial cristae. Mitochondrial respiratory chain complex content was significantly increased (P<0.05, P<0.01), and mitochondrial membrane potentials were elevated (P<0.05). SOD activity was elevated, and ROS levels were significantly reduced (P<0.05, P<0.01). Furthermore, the mRNA expression of PGC-1α and SIRT3 was upregulated, with increased protein levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, while FIS1 protein expression levels were significantly reduced (P<0.05, P<0.01). Across the KXS-treated groups, the granule group showed a higher spontaneous alternation rate than the decoction and powder groups (P<0.05). ConclusionKXS decoction, powders, and granules can improve the learning and memory ability of rats, with granules being the most effective. The mechanism of action may involve activation of the AMPK/PGC-1α/SIRT3 signaling pathway, improvement of the mitochondrial function, and subsequent amelioration of the brain energy metabolism disorders.
2.Mechanism of Different Dosage Forms of Kaixinsan in Improving Mitochondrial Function for Prevention and Treatment of Cognitive Disorder Based on AMPK/PGC-1α/SIRT3 Pathway
Shuyue KANG ; Yanzi YU ; Jiaqun SUN ; Wenxuan CHEN ; Yaqin YANG ; Qi WANG ; Weirong LI ; Limei YAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):15-24
ObjectiveTo explore the effects of different dosage forms of Kaixinsan (KXS) on the morphology and function of mitochondria in rat models of Alzheimer's disease (AD) and potential mechanisms of action. MethodsMale SD rats were randomly assigned to a sham group, model group, treatment groups receiving KXS decoction, powders, and granules (3.08 g·kg-1), as well as donepezil group (0.51×10-3 g·kg-1), with 10 rats in each group. AD model was created using intracerebroventricular injection of streptozocin (STZ). After 30 days of administration, behavioral assessments were conducted, and mitochondrial morphology was observed using transmission electron microscopy. Mitochondrial respiratory chain complex content was measured via enzyme-linked immunosorbent assay (ELISA). Changes in mitochondrial membrane potential were measured via JC-1 staining, and superoxide dismutase (SOD) activity and reactive oxygen species (ROS) levels were measured via biochemical assays. The mRNA expression of adenosine 5'-monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and silent information regulator 3 (SIRT3) was detected by real-time fluorescent quantitative polymerase chain reaction (Real-time PCR), and Western blot was used to examine the protein expression levels of optic atrophy protein1 (OPA1), mitochondrial fission protein 1 (FIS1), AMPK, p-AMPK, PGC-1α, and SIRT3. ResultsCompared with the sham group, rats in the model group had significantly lower recognition index, spontaneous alternation rate, escape latency, number of platform crossings, time spent in the target quadrant, and percentage of distance traveled in the target quadrant distance (P<0.05, P<0.01). Significant mitochondrial damage was observed in the hippocampal tissue, with a marked decrease in mitochondrial respiratory chain complex content (P<0.01) and reduced mitochondrial membrane potential (P<0.05). Additionally, the SOD activity was reduced, while ROS levels were elevated (P<0.01). The mRNA expression of PGC-1α and SIRT3 was significantly downregulated (P<0.01), along with decreased protein expression levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, whereas FIS1 protein expression was significantly upregulated (P<0.05, P<0.01). Compared with the model group, rats in KXS-treated groups (various dosage forms) showed significant improvement in behavioral indexes (P<0.05, P<0.01), reduced hippocampal mitochondrial damage, and more organized mitochondrial cristae. Mitochondrial respiratory chain complex content was significantly increased (P<0.05, P<0.01), and mitochondrial membrane potentials were elevated (P<0.05). SOD activity was elevated, and ROS levels were significantly reduced (P<0.05, P<0.01). Furthermore, the mRNA expression of PGC-1α and SIRT3 was upregulated, with increased protein levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, while FIS1 protein expression levels were significantly reduced (P<0.05, P<0.01). Across the KXS-treated groups, the granule group showed a higher spontaneous alternation rate than the decoction and powder groups (P<0.05). ConclusionKXS decoction, powders, and granules can improve the learning and memory ability of rats, with granules being the most effective. The mechanism of action may involve activation of the AMPK/PGC-1α/SIRT3 signaling pathway, improvement of the mitochondrial function, and subsequent amelioration of the brain energy metabolism disorders.
3.The Role of Mechanical Sensitive Ion Channel Piezo in Digestive System Diseases
Si-Qi WANG ; Xiang-Yun YAN ; Yan-Qiu LI ; Fang-Li LUO ; Jun-Peng YAO ; Pei-Tao MA ; Yu-Jun HOU ; Hai-Yan QIN ; Yun-Zhou SHI ; Ying LI
Progress in Biochemistry and Biophysics 2024;51(8):1883-1894
The Piezo protein is a non-selective mechanosensitive cation channel that exhibits sensitivity to mechanical stimuli such as pressure and shear stress. It converts mechanical signals into bioelectric activity within cells, thus triggering specific biological responses. In the digestive system, Piezo protein plays a crucial role in maintaining normal physiological activities, including digestion, absorption, metabolic regulation, and immune modulation. However, dysregulation in Piezo protein expression may lead to the occurrence of several pathological conditions, including visceral hypersensitivity, impairment of intestinal mucosal barrier function, and immune inflammation.Therefore, conducting a comprehensive review of the physiological functions and pathological roles of Piezo protein in the digestive system is of paramount importance. In this review, we systematically summarize the structural and dynamic characteristics of Piezo protein, its expression patterns, and physiological functions in the digestive system. We particularly focus on elucidating the mechanisms of action of Piezo protein in digestive system tumor diseases, inflammatory diseases, fibrotic diseases, and functional disorders. Through the integration of the latest research findings, we have observed that Piezo protein plays a crucial role in the pathogenesis of various digestive system diseases. There exist intricate interactions between Piezo protein and multiple phenotypes of digestive system tumors such as proliferation, apoptosis, and metastasis. In inflammatory diseases, Piezo protein promotes intestinal immune responses and pancreatic trypsinogen activation, contributing to the development of ulcerative colitis, Crohn’s disease, and pancreatitis. Additionally, Piezo1, through pathways involving co-action with the TRPV4 ion channel, facilitates neutrophil recruitment and suppresses HIF-1α ubiquitination, thereby mediating organ fibrosis in organs like the liver and pancreas. Moreover, Piezo protein regulation by gut microbiota or factors like age and gender can result in increased or decreased visceral sensitivity, and alterations in intestinal mucosal barrier structure and permeability, which are closely associated with functional disorders like irritable bowel sydrome (IBS) and functional consitipaction (FC). A thorough exploration of Piezo protein as a potential therapeutic target in digestive system diseases can provide a scientific basis and theoretical support for future clinical diagnosis and treatment strategies.
4.Establishment of SHERLOCK-HBA Detection Method and Its Application in Blood Identification
Qian-Wei YAO ; Hong-Xia HE ; Sheng HU ; Yi-Xia ZHAO ; Yu LUO ; An-Quan JI ; Qi-Fan SUN
Progress in Biochemistry and Biophysics 2024;51(8):1971-1982
ObjectiveRapid and accurate identification of body fluid traces at crime scenes is crucial for case investigation. Leveraging the speed and sensitivity of nucleic acid detection technology based on SHERLOCK, our research focuses on developing a peripheral blood SHERLOCK-HBA detection system to detect mRNA in forensic practice. MethodsShort crRNA fragments targeting the blood-specific mRNA gene HBA were designed and screened, alongside RPA primers. Optimal RPA primers were selected based on specificity and amplification efficiency, leading to the establishment of the RPA system. The most efficient crRNA was chosen based on relative fluorescence units (RFU) generated by the Cas protein reaction, and the Cas protein reaction system was constructed to establish the SHERLOCK-HBA detection method. The RPA and Cas protein reaction systems in the SHERLOCK detection system were then individually optimized. A total of 79 samples of five body fluids were tested to evaluate the method’s ability to identify blood, with further verification through species-specific tests, sensitivity tests, mixed spots detection, aged samples, UV-irradiated samples, and actual casework samples. ResultsThe SHERLOCK reaction system for the peripheral blood-specific marker HBA was successfully established and optimized, enabling detection within 30 min. The method demonstrated a detection limit of 0.001 ng total RNA, better than FOB strip method and comparable to RT-PCR capillary electrophoresis. The system could detect target body fluids in mixed samples and identify blood in samples stored at room temperature for three years and exposed to UV radiation for 32 h. Detection of 11 casework samples showed performance comparable to RT-PCR capillary electrophoresis. ConclusionThis study presents a CRISPR/Cas-based SHERLOCK-HBA detection system capable of accurately, sensitively, and rapidly identifying blood samples. Introducing CRISPR/Cas technology to forensic body fluid identification represents a significant advancement in applying cutting-edge molecular biology techniques to forensic science.The method’s simplicity, shorter detection time, and independence from specialized equipment make it promising for rapid blood sample identification in forensic cases.
5.Life satisfaction and associated factors among adolescents relocated for poverty alleviation in Shanxi Province
LI Zhenhao, YANG Le, YAO Dianrui, YANG Yang, GUO Dan, YU Qi
Chinese Journal of School Health 2024;45(10):1441-1445
Objective:
To investigate factors associated with life satisfaction among adolescents who have been relocated for poverty alleviation,so as to provide scientific evidence to support adolescent physical and mental well being.
Methods:
A multi stage stratified random sampling was conducted from June to August 2023 across 24 relocation sites in 8 counties of 4 cities in Shanxi Province. A total of 631 adolescents aged 10-19 were surveyed regarding personal characteristics, family environment, health behaviors, mental health, and social capital. Univariate analysis of variance and binary Logistic regression were used to explore the influencing factors.
Results:
The life satisfaction rate of the relocated adolescents was 63.9%(403/631), and the average score of life satisfaction was (23.21±6.28). The Logistic regression analysis showed that, significant factors affecting life satisfaction of the relocated adolescents included age (17-19 years old: AOR= 0.54 , 95%CI =0.33-0.88), subjective family economic status (moderate: AOR=1.70, 95%CI =1.04-2.76; good: AOR=6.95, 95%CI =1.85-26.16), sleep quality (good: AOR=1.61, 95%CI =1.09-2.38), depression ( AOR=0.94, 95%CI =0.90-0.99), and social capital ( AOR=1.17, 95%CI =1.10-1.23)( P <0.05).
Conclusions
The satisfaction of 17-19 year old adolescents who have relocated for poverty alleviation is relatively low, while those with better family economic status, high sleep quality, low depression level and rich social capital showed high life satisfaction. Targeted interventions by families, communities, schools, and social institutions are recommended to improve adolescents quality of life.
6.RNA SNP Detection Method With Improved Specificity Based on Dual-competitive-padlock-probe
Qin-Qin ZHANG ; Jin-Ze LI ; Wei ZHANG ; Chuan-Yu LI ; Zhi-Qi ZHANG ; Jia YAO ; Hong DU ; Lian-Qun ZHOU ; Zhen GUO
Progress in Biochemistry and Biophysics 2024;51(11):3021-3033
ObjectiveThe detection of RNA single nucleotide polymorphism (SNP) is of great importance due to their association with protein expression related to various diseases and drug responses. At present, splintR ligase-assisted methods are important approaches for RNA direct detection, but its specificity will be limited when the fidelity of ligases is not ideal. The aim of this study was to create a method to improve the specificity of splintR ligase for RNA detection. MethodsIn this study, a dual-competitive-padlock-probe (DCPLP) assay without the need for additional enzymes or reactions is proposed to improve specificity of splintR ligase ligation. To verify the method, we employed dual competitive padlock probe-mediated rolling circle amplification (DCPLP-RCA) to genotype the CYP2C9 gene. ResultsThe specificity was well improved through the competition and strand displacement of dual padlock probe, with an 83.26% reduction in nonspecific signal. By detecting synthetic RNA samples, the method demonstrated a dynamic detection range of 10 pmol/L-1 nmol/L. Furthermore, clinical samples were applied to the method to evaluate its performance, and the genotyping results were consistent with those obtained using the qPCR method. ConclusionThis study has successfully established a highly specific direct RNA SNP detection method, and provided a novel avenue for accurate identification of various types of RNAs.
7.Analysis of the Symptoms of Thirst or Non-thirst in the Syndrome of Xiao Qinglong Decoction
Xiao-Fen YAO ; Chun-Mei LIN ; Qi-Jun HUANG ; Jing-Yu RONG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(1):247-250
There seems to be a contradiction among the symptoms of"non-thirst"and"thirst after oral use of the decoction"stated in original text 41 of Shang Han Lun(Treatise on Febrile Diseases)and the symptom of"probable thirst"stated in original text 40.In this article,the symptoms of thirst or non-thirst in the syndrome of Xiao Qinglong Decoction were expounded through the analysis of the basic theories of traditional Chinese medicine about body fluid metabolism and the pathogenic mechanism of thirst,and by synthesizing the relevant articles recorded in Jin Gui Yao Lve(Synopsis of the Golden Chamber)and the understanding of the syndrome of Xiao Qinglong Decoction by later generations of practitioners.After that,the following views are put forward:non-thirst symptom is the primary sympton of the syndrome of Xiao Qinglong Decoction,which results from the disease;thirst after oral use of the decoction is due to drug-induced thirst,which can be classified into the category of physiological thirst;probable thirst symptom is related with fluid consumption by febrile disease,indicating that the disease involves yangming.The analysis of the symptoms of thirst or non-thirst in the syndrome of Xiao Qinglong Decoction is helpful for evaluation of therapeutic efficacy,and can also be used as the indications of modified medications and differential diagnosis of the disease.The exploration will provide references for the clinical use of Xiao Qinglong Decoction and will be beneficial to improving the clinical efficacy of Xiao Qinglong Decoction.
8.Construction of Knowledge Service and Clinical Application System of"Prevention of Disease"in Traditional Chinese Medicine Based on Big Data Convergence
Xiuying KUANG ; Qi YU ; Jinghua LI ; Guoxiang LI ; Xianhong LI ; Weimin ZHAO ; Fan YAO
World Science and Technology-Modernization of Traditional Chinese Medicine 2024;26(1):236-241
Objective To explore the construction idea and application method of knowledge base and knowledge mining system for the prevention and treatment of diseases in traditional Chinese medicine.Methods Guided by the theory of traditional Chinese medicine(TCM),firstly,the knowledge system of TCM Prevention and treatment was sorted out,and the structure and relationship of TCM Prevention and treatment knowledge base were designed according to the classification method of TCM Prevention and treatment;Secondly,according to the needs of pre treatment research,the ancient and modern literature data sources and knowledge collection methods of TCM pre treatment database are proposed;Then,under the framework of the pre treatment classification system,the core knowledge is studied in the aspects of professional annotation,relationship extraction,knowledge audit,and a variety of data mining algorithms are introduced to analyze and mine the knowledge;Finally,the massive data obtained are combined with big data analysis and computer machine learning to realize intelligent information collection,disease analysis and diagnosis and treatment suggestions.Results Under the guidance of traditional Chinese medicine theory,the knowledge base of traditional Chinese medicine for prevention and treatment of diseases can digitize,digitize and intellectualize the basic knowledge and clinical knowledge of traditional Chinese medicine for prevention and treatment of diseases,and can objectively mine and analyze the data,providing a basis for the service and sharing of knowledge of traditional Chinese medicine for prevention and treatment of diseases.Conclusion The knowledge base of TCM Prevention and treatment is an important way for the digital storage of TCM Prevention and treatment knowledge,and provides literature knowledge support and objective evidence of data mining for TCM Prevention and treatment research.
9.Reflection on general and innovative education of palliative care in China
Xiaona QI ; Qiang YAO ; Qinming YU ; Miaomiao ZHAO ; Yan WANG ; Menglan ZHONG ; Lijuan YU
Chinese Medical Ethics 2024;37(3):332-338
With the process of China’s aging population intensifying, palliative care, as an important guarantee for improving the quality of life of terminally ill patients, is receiving more and more social attention, and the demand is constantly increasing. Palliative care needs versatile professionals, and general education can enhance people’s awareness and understanding of it, enabling more people to understand, accept, and participate in palliative care. With the advancement of knowledge and technology in palliative care, the traditional cramming education models are no longer able to meet the actual needs. Therefore, there is an urgent need to innovate palliative care education strategies. By analyzing the current problems in the general education of palliative care in China, this paper proposed thoughts and suggestions for general and innovative education of palliative care in several aspects, such as establishing general and innovative education systems and evaluation systems of palliative care, diversifying educational contents and methods, strengthening medical staffs training, promoting diversified student groups, and strengthening the popularization of palliative care knowledge among the public.
10. Advances in relationship between pyroptosis and pulmonary arterial hypertension and therapeutic drugs
Qian YAN ; Yang SUN ; Jun-Peng LONG ; Jiao YAO ; Yu-Ting LIN ; Song-Wei YANG ; Yan-Tao YANG ; Gang PEI ; Qi-Di AI ; Nai-Hong CHEN ; Qian YAN ; Yang SUN ; Jun-Peng LONG ; Jiao YAO ; Yu-Ting LIN ; Song-Wei YANG ; Yan-Tao YANG ; Gang PEI ; Qi-Di AI ; Nai-Hong CHEN ; Sha-Sha LIU ; Nai-Hong CHEN
Chinese Pharmacological Bulletin 2024;40(1):25-30
Pyroptosis is the programmed death of cells accompanied by an inflammatory response and is widely involved in the development of a variety of diseases, such as infectious diseases, cardiovascular diseases, and neurodegeneration. It has been shown that cellular scorching is involved in the pathogenesis of pulmonary arterial hypertension ( PAH) in cardiovascular diseases. Patients with PAH have perivascular inflammatory infiltrates in lungs, pulmonary vasculopathy exists in an extremely inflam-matory microenvironment, and pro-inflammatory factors in cellular scorching drive pulmonary vascular remodelling in PAH patients. This article reviews the role of cellular scorch in the pathogenesis of PAH and the related research on drugs for the treatment of PAH, with the aim of providing new ideas for clinical treatment of PAH.


Result Analysis
Print
Save
E-mail