1.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
2.Research status of regulating aerobic glycolysis by traditional Chinese medicine in prevention and treatment of lung cancer
Mao-Fu ZHANG ; Yu-Chan CHEN ; Zhong-Yang SONG ; Lu-Lu CHEN ; Hai-Hong ZHAO ; Zhi-Ming ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(13):1982-1985
Aerobic glycolysis(AEG),as the main pathway of energy metabolism of various malignant tumor cells,is involved in the whole process of the occurrence and development of lung cancer,and plays a key role in inducing tumor proliferation,invasion and metastasis.Traditional Chinese medicine monomers and compounds can regulate the expression of related signaling pathways and key proteases and genes by interfering with AEG pathway,promote the apoptosis of lung cancer cells,inhibit the AEG process and the proliferation and growth of lung cancer cells,and thus play an anti-tumor role.Based on this,this paper summarized the biological function of AEG,the mechanism of regulating lung cancer and the intervention mechanism of traditional Chinese medicine,in order to provide new ideas and scientific basis for the development of clinical drugs for lung cancer.
3.The effect of treatment duration with human urinary kallidinogenase on the efficacy and safety of acute ischemic stroke: a subgroup analysis of RESK study
Jun NI ; Ming YAO ; Lihua WANG ; Ming YU ; Runhui LI ; Lihong ZHAO ; Jiachun WANG ; Yinzhou WANG ; Xin WANG ; Haiqing SONG ; Benyan LUO ; Jiawei WANG ; Yining HUANG ; Liying CUI
Chinese Journal of Neurology 2024;57(3):225-232
Objective:To explore the impact of treatment duration with human urinary kallidinogenase (HUK) on the efficacy and safety of acute ischemic stroke (AIS).Methods:In this subgroup analysis of RESK study, a total of 990 AIS patients recruited from 65 centers in China between August 2015 and June 2020 were included and divided into short medication group (HUK for 8 days, n=185) or long medication group (HUK for 15 days or 21 days, n=805). The proportions of patients with modified Rankin Scale (mRS) score of 0, 0-1, 0-2 at 90 days, National Institutes of Health Stroke Scale (NIHSS) score change from baseline to 22 days, the proportions of patients with Barthel index (BI)≥95 at 90 days, and the incidences of adverse events were analyzed. Comparisons between groups were conducted using chi-square test, single factor and multivariate Logistic regression analysis, etc. Results:Multivariate regression analysis showed that the proportions of patients with 90-day mRS score of 0-2 [74.1% (137/185) vs 75.0% (604/805); OR=1.047, 95% CI 0.676-1.620, P=0.838] and 22-day NIHSS score change from baseline (4.60±2.00 vs 4.26±2.80; OR=-0.390, 95% CI -1.125-0.344, P=0.297) showed no statistically significant difference between the short medication and long medication groups; the proportions of patients with 90-day mRS score of 0-1 [48.1% (89/185) vs 59.1% (476/805); OR=0.674, 95%CI 0.463-0.983, P=0.041] and 90-day BI≥95 [43.6% (79/181) vs 55.1% (442/802); OR=0.614, 95%CI 0.420-0.897, P=0.012] were significantly lower in the short medication group than in the long medication group. There was no statistically significant difference in the incidences of adverse events between these 2 groups. Conclusions:In AIS patients, consecutive 8-day dosing of HUK improved immediate (22-day NIHSS score) and long-term outcome (90-day mRS score 0-2) and was safely tolerated. When applicable, extended duration of HUK could improve long-term disability-free rate (90-day mRS score 0-1) and quality of life (90-day BI) without increasing the risk of adverse events.
4.No Incidence of Liver Cancer Was Observed in A Retrospective Study of Patients with Aristolochic Acid Nephropathy.
Tao SU ; Zhi-E FANG ; Yu-Ming GUO ; Chun-Yu WANG ; Jia-Bo WANG ; Dong JI ; Zhao-Fang BAI ; Li YANG ; Xiao-He XIAO
Chinese journal of integrative medicine 2024;30(2):99-106
OBJECTIVE:
To assess the risk of aristolochic acid (AA)-associated cancer in patients with AA nephropathy (AAN).
METHODS:
A retrospective study was conducted on patients diagnosed with AAN at Peking University First Hospital from January 1997 to December 2014. Long-term surveillance and follow-up data were analyzed to investigate the influence of different factors on the prevalence of cancer. The primary endpoint was the incidence of liver cancer, and the secondary endpoint was the incidence of urinary cancer during 1 year after taking AA-containing medication to 2014.
RESULTS:
A total of 337 patients diagnosed with AAN were included in this study. From the initiation of taking AA to the termination of follow-up, 39 patients were diagnosed with cancer. No cases of liver cancer were observed throughout the entire follow-up period, with urinary cancer being the predominant type (34/39, 87.17%). Logistic regression analysis showed that age, follow-up period, and diabetes were potential risk factors, however, the dosage of the drug was not significantly associated with urinary cancer.
CONCLUSIONS
No cases of liver cancer were observed at the end of follow-up. However, a high prevalence of urinary cancer was observed in AAN patients. Establishing a direct causality between AA and HCC is challenging.
Humans
;
Retrospective Studies
;
Incidence
;
Carcinoma, Hepatocellular
;
Liver Neoplasms/epidemiology*
;
Kidney Diseases/chemically induced*
;
Aristolochic Acids/adverse effects*
5.Effects of Yiqi tongmai formula on atherosclerosis in ApoE-/- mice and its mechanism
Quanna REN ; Yuhan CHEN ; Kun WANG ; Ming MA ; Yanhua YANG ; Yu ZHANG ; Xu ZHAO
China Pharmacy 2024;35(18):2232-2237
OBJECTIVE To investigate the effects of Yiqi tongmai formula on atherosclerosis (AS) in ApoE-/- mice and its mechanism. METHODS Forty ApoE-/- mice were randomly divided into model group, positive control group [atorvastatin calcium, 2.6 mg/(kg·d)], and low-dose, medium-dose and high-dose groups of Yiqi tongmai formula [0.46, 0.91, 1.82 g/(kg·d), by raw material], with 8 mice in each group. Eight C57BL/6J mice were selected as the normal group. Except for the normal group, the other groups were given a high-lipid diet and relevant drug or normal saline intragastrically, once a day, for 12 consecutive weeks. After the last medication, the serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) as well as the contents of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and monocyte chemoattractant protein-1 (MCP-1) were measured in mice. The proportion of aortic plaque area in each group of mice was detected and calculated, and the pathological morphological changes of the aortic sinus were observed; the protein phosphorylation levels of aortic phosphoinositide 3-kinase (PI3K), protein kinase B (aka Akt) and mammalian target of rapamycin (mTOR) were examined. RESULTS Compared with the model group, the serum levels of TC, TG and LDL-C and the contents of TNF-α, IL-1β and MCP-1 (including low-dose group) were decreased significantly in medium-dose and high-dose groups of Yiqi tongmai formula, while the content of HDL-C in high-dose group was increased significantly (P<0.05 or P<0.01); aortic plaques of the mice were reduced in Yiqi tongmai formula groups to different extents, and pathological changes such as lipid deposition and inflammatory cell infiltration were relieved to different extents; the proportion of aortic plaque area, the protein phosphorylation levels of PI3K, Akt and mTOR in aortic tissue were significantly reduced in medium-dose and high-dose groups of Yiqi tongmai formula (P<0.05 or P<0.01). CONCLUSIONS Yiqi tongmai formula can improve lipid metabolism, reduce inflammatory response, and delay plaque development in AS mice. Its effect may be related to the inhibition of PI3K/Akt/mTOR signaling pathway activation.
6.Effect of type of carrier material on the in vitro properties of solid dispersions of progesterone
Jing-nan QUAN ; Yi CHENG ; Jing-yu ZHOU ; Meng LI ; Zeng-ming WANG ; Nan LIU ; Zi-ming ZHAO ; Hui ZHANG ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2024;59(3):735-742
This study investigated the effect of different carrier materials on the
7.Study on fluvoxamine maleate sustained-release pellets and its compression technology
Ming-hui XU ; Xing-yue ZHANG ; Qiao DONG ; Xia ZHAO ; Yu-ru BU ; Le-zhen CHEN
Acta Pharmaceutica Sinica 2024;59(2):439-447
In this study, fluvoxamine maleate sustained-release pellet system tablets were prepared and were used to evaluate their release behaviors
8.Research progress on the improvement mechanism of traditional Chinese medicine compounds and active ingredients in schizophrenia
Xinhui YAO ; Yonghou ZHAO ; Jianbo CHAI ; Ming YU ; Xiujie QU
China Pharmacy 2024;35(9):1151-1156
Schizophrenia has various obstacles in cognition, thinking, emotion, behavior and other aspects; it belongs to the category of “madness” in traditional Chinese medicine (TCM). Once schizophrenia occurs, multiple factors are often intertwined, and a single therapy is difficult to be effective. At present, TCM compounds and active ingredients have significant effects in the clinical treatment of schizophrenia, which is an important direction for the development of new drugs for schizophrenia. This article summarizes the molecular mechanism of TCM compounds and active ingredients in the treatment of schizophrenia. It is found that Wendan decoction and Yudian decoction can inhibit the apoptosis of hippocampal cells by activating BDNF/TrKB/CREB signaling pathway; quercetin and icariin can promote neural development and regeneration by activating NMDA/ERK signaling pathway; Wendan decoction and icariin can maintain neural cell homeostasis by activating PI3K/AKT signaling pathway; Bushen zhuangyang capsule can enhance learning and memory abilities by activating CaMKⅡ signaling pathway; formulas such as Huatan huoxue tongzhi formula can enhance intercellular information transmission by inhibiting PKC signaling pathway; α-humulene and others can restore nerve cell function by inhibiting NRG1/ErbB4 signaling pathway. TCM compounds and active ingredients can improve schizophrenia by intervening in the above-mentioned signaling pathways.
9.Effect of Yiqi Tongmai Formula in Intervening in Liver Inflammation and Lipidosis in ApoE-∕- Mice Based on NF-κB/NLRP3 Signaling Pathway
Yuhan CHEN ; Quanna REN ; Kun WANG ; Tingting SU ; Yanhua YANG ; Ming MA ; Yu ZHANG ; Xu ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(15):64-72
ObjectiveTo investigate the effect of Yiqi Tongxin formula (YQTM) on liver inflammation in apolipoprotein E-∕- (ApoE-∕-) mice by regulating the nuclear transcription factor-κB (NF-κB)/NOD-like receptor protein 3 (NLRP3) signaling pathway. MethodForty ApoE-∕- mice were randomly divided into a model group, an atorvastatin group (positive drug group), and low-, medium-, and high-dose YQTM groups (0.39, 0.78, 1.56 g·kg-1). Each drug administration group was given the corresponding concentration of the drug by gavage on the basis of high-fat feeding for 12 consecutive weeks. Eight C57BL/6J mice were used as a blank group and fed with normal chow. After 12 weeks, oil red O staining and Masson staining were used to observe the aortic lesions in mice and to determine whether the modeling was successful. Oil red O staining was used to observe the lipidosis in the livers of mice. Hematoxylin-eosin (HE) staining was used to observe the tissue lesions in the livers of mice. Masson staining was used to observe the distribution of collagen fibers in the livers of mice. Enzyme markers were used to detect the total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL-C), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in mouse serum, as well as total cholesterol (TC) and triglyceride (TG) in the liver. Interleukin-1β (IL-1β) and IL-18 were detected in mouse liver by enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry (IHC) was utilized to observe the expression regions of NF-κB and NLRP3 in the livers of mice. Western blot was employed to detect the protein expression levels of NF-κB, NF-κB inhibitory protein (IκB), IκB kinase β (IKKβ), phosphorylated NF-κB (p-NF-κB), phosphorylated IκB (p-IκB), phosphorylated IKK β (p-IKKβ), NLRP3, and Caspase-1 in the livers of mice. ResultCompared with the blank group, the model group showed severe aortic lipidosis, and the intracellular fat droplets in the livers aggregated in large quantities. The cytoplasm was filled with fat vacuoles(P<0.01). The serum levels of TG, TC, LDL-C, AST, and ALT were significantly elevated in the mice(P<0.01). TG and TC levels were elevated in the liver(P<0.01). The levels of IL-1β and IL-18 in liver tissue, as well as the protein expression levels of NF-κB, IκB, IKKβ, p-NF-κB, p-IκB, p-IKKβ, NLRP3, and Caspase-1 in the liver were significantly elevated(P<0.01). Compared with the model group, the aortic arch plaques of mice in each YQTM group were attenuated, and the fat aggregation in the liver was reduced. The inflammatory cell infiltration was alleviated(P<0.05,P<0.01). The serum levels of TG, TC, LDL-C, AST, and ALT were significantly reduced(P<0.05,P<0.01). TG and TC levels in the liver were reduced. The IL-1β and IL-18 levels in liver tissue, as well as protein expression levels of NF-κB, IκB, IKKβ, p-NF-κB, p-IκB, p-IKKβ, NLRP3, and Caspase-1 in the liver were significantly reduced(P<0.05,P<0.01). ConclusionThe intervention mechanism of YQTM on liver inflammation in ApoE-∕- mice may be related to the down-regulation of the NF-κB/NLRP3 signaling pathway.
10.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.

Result Analysis
Print
Save
E-mail