1.Application of CRISPR/Cas System in Precision Medicine for Triple-negative Breast Cancer
Hui-Ling LIN ; Yu-Xin OUYANG ; Wan-Ying TANG ; Mi HU ; Mao PENG ; Ping-Ping HE ; Xin-Ping OUYANG
Progress in Biochemistry and Biophysics 2025;52(2):279-289
Triple-negative breast cancer (TNBC) represents a distinctive subtype, characterized by the absence of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2). Due to its high inter-tumor and intra-tumor heterogeneity, TNBC poses significant chanllenges for personalized diagnosis and treatment. The advant of clustered regular interspaced short palindromic repeats (CRISPR) technology has profoundly enhanced our understanding of the structure and function of the TNBC genome, providing a powerful tool for investigating the occurrence and development of diseases. This review focuses on the application of CRISPR/Cas technology in the personalized diagnosis and treatment of TNBC. We begin by discussing the unique attributes of TNBC and the limitations of current diagnostic and treatment approaches: conventional diagnostic methods provide limited insights into TNBC, while traditional chemotherapy drugs are often associated with low efficacy and severe side effects. The CRISPR/Cas system, which activates Cas enzymes through complementary guide RNAs (gRNAs) to selectively degrade specific nucleic acids, has emerged as a robust tool for TNBC research. This technology enables precise gene editing, allowing for a deeper understanding of TNBC heterogeneity by marking and tracking diverse cell clones. Additionally, CRISPR facilitates high-throughput screening to promptly identify genes involved in TNBC growth, metastasis, and drug resistance, thus revealing new therapeutic targets and strategies. In TNBC diagnostics, CRISPR/Cas was applied to develop molecular diagnostic systems based on Cas9, Cas12, and Cas13, each employing distinct detection principles. These systems can sensitively and specifically detect a variety of TNBC biomarkers, including cell-specific DNA/RNA and circulating tumor DNA (ctDNA). In the realm of precision therapy, CRISPR/Cas has been utilized to identify key genes implicated in TNBC progression and treatment resistance. CRISPR-based screening has uncovered potential therapeutic targets, while its gene-editing capabilities have facilitated the development of combination therapies with traditional chemotherapy drugs, enhancing their efficacy. Despite its promise, the clinical translation of CRISPR/Cas technology remains in its early stages. Several clinical trials are underway to assess its safety and efficacy in the treatment of various genetic diseases and cancers. Challenges such as off-target effects, editing efficiency, and delivery methods remain to be addressed. The integration of CRISPR/Cas with other technologies, such as 3D cell culture systems, human induced pluripotent stem cells (hiPSCs), and artificial intelligence (AI), is expected to further advance precision medicine for TNBC. These technological convergences can offer deeper insights into disease mechanisms and facilitate the development of personalized treatment strategies. In conclusion, the CRISPR/Cas system holds immense potential in the precise diagnosis and treatment of TNBC. As the technology progresses and becomes more costs-effective, its clinical relevance will grow, and the translation of CRISPR/Cas system data into clinical applications will pave the way for optimal diagnosis and treatment strategies for TNBC patients. However, technical hurdles and ethical considerations require ongoing research and regulation to ensure safety and efficacy.
2.Network pharmacology-based mechanism of combined leech and bear bile on hepatobiliary diseases
Chen GAO ; Yu-shi GUO ; Xin-yi GUO ; Ling-zhi ZHANG ; Guo-hua YANG ; Yu-sheng YANG ; Tao MA ; Hua SUN
Acta Pharmaceutica Sinica 2025;60(1):105-116
In order to explore the possible role and molecular mechanism of the combined action of leech and bear bile in liver and gallbladder diseases, this study first used network pharmacology methods to screen the components and targets of leech and bear bile, as well as the related target genes of liver and gallbladder diseases. The selected key genes were subjected to interaction network and GO/KEGG enrichment analysis. Then, using sodium oleate induced HepG2 cell lipid deposition model and
3.Analysis of T7 RNA Polymerase: From Structure-function Relationship to dsRNA Challenge and Biotechnological Applications
Wei-Chen NING ; Yu HUA ; Hui-Ling YOU ; Qiu-Shi LI ; Yao WU ; Yun-Long LIU ; Zhen-Xin HU
Progress in Biochemistry and Biophysics 2025;52(9):2280-2294
T7 RNA polymerase (T7 RNAP) is one of the simplest known RNA polymerases. Its unique structural features make it a critical model for studying the mechanisms of RNA synthesis. This review systematically examines the static crystal structure of T7 RNAP, beginning with an in-depth examination of its characteristic “thumb”, “palm”, and “finger” domains, which form the classic “right-hand-like” architecture. By detailing these structural elements, this review establishes a foundation for understanding the overall organization of T7 RNAP. This review systematically maps the functional roles of secondary structural elements and their subdomains in transcriptional catalysis, progressively elucidating the fundamental relationships between structure and function. Further, the intrinsic flexibility of T7 RNAP and its applications in research are also discussed. Additionally, the review presents the structural diagrams of the enzyme at different stages of the transcription process, and through these diagrams, it provides a detailed description of the complete transcription process of T7 RNAP. By integrating structural dynamics and kinetics analyses, the review constructs a comprehensive framework that bridges static structure to dynamic processes. Despite its advantages, T7 RNAP has a notable limitation: it generates double-stranded RNA (dsRNA) as a byproduct. The presence of dsRNA not only compromises the purity of mRNA products but also elicits nonspecific immune responses, which pose significant challenges for biotechnological and therapeutic applications. The review provides a detailed exploration of the mechanisms underlying dsRNA formation during T7 RNAP catalysis, reviews current strategies to mitigate this issue, and highlights recent progress in the field. A key focus is the semi-rational design of T7 RNAP mutants engineered to minimize dsRNA generation and enhance catalytic performance. Beyond its role in transcription, T7 RNAP exhibits rapid development and extensive application in fields, including gene editing, biosensing, and mRNA vaccines. This review systematically examines the structure-function relationships of T7 RNAP, elucidates the mechanisms of dsRNA formation, and discusses engineering strategies to optimize its performance. It further explores the engineering optimization and functional expansion of T7 RNAP. Furthermore, this review also addresses the pressing issues that currently need resolution, discusses the major challenges in the practical application of T7 RNAP, and provides an outlook on potential future research directions. In summary, this review provides a comprehensive analysis of T7 RNAP, ranging from its structural architecture to cutting-edge applications. We systematically examine: (1) the characteristic right-hand domains (thumb, palm, fingers) that define its minimalistic structure; (2) the structure-function relationships underlying transcriptional catalysis; and (3) the dynamic transitions during the complete transcription cycle. While highlighting T7 RNAP’s versatility in gene editing, biosensing, and mRNA vaccine production, we critically address its major limitation—dsRNA byproduct formation—and evaluate engineering solutions including semi-rationally designed mutants. By synthesizing current knowledge and identifying key challenges, this work aims to provide novel insights for the development and application of T7 RNAP and to foster further thought and progress in related fields.
4.Evaluation of cardiac involvement in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis using echocardiography combined with electrocardiography
Aiqing LU ; Ling CHEN ; Xiuyun SUN ; Xin DONG ; Xiaoyan LI ; Yongcun SUN ; Shaowen LYU ; Long YU ; Yong ZHANG
Chinese Journal of Radiological Health 2025;34(4):534-539
Objective To evaluate cardiac involvement in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV) using echocardiography combined with electrocardiography. Methods A retrospective analysis was performed on the detailed medical records of AAV patients treated in Jining First People’s Hospital between January 2020 and December 2024. Eighty patients were enrolled in the AAV group, and the risk of heart disease was compared between the AAV group and a control group with 80 subjects matched for age, sex, and cardiovascular disease risk factors. Results Electrocardiographic abnormalities were observed in 78.75% of patients in the AAV group, while significant electrocardiographic abnormalities only occurred in symptomatic patients in the control group. There were no differences in left atrial enlargement or interventricular septal thickening between the AAV group and the control group. The overall left ventricular systolic function in the AAV group was lower than that in the control group (8.75% vs. 0). The incidence of reduced diastolic function in the AAV group was significantly higher than that in the control group (37.5% vs. 15%). The incidence rates of tricuspid regurgitation, mitral regurgitation, aortic regurgitation, and pericardial effusion in the AAV group were significantly higher than those in the control group. Pericardial thickening, aortic stenosis, pulmonary hypertension, and rare periaortic granulomas were found in the AAV group, but not in the control group. Conclusion Echocardiography and electrocardiography are important examination methods for evaluating cardiac involvement in AAV. These methods have key roles in disease screening, diagnosis and treatment, follow-up, and prognosis judgment.
5.Research progress in epidemiology and vaccine development of the H9N2 avian influenza virus
Ning-Xin TANG ; Cong-Jie CHEN ; Ling-Yu HAN ; Jun-Yu CHEN ; Yi-Xin CHEN
Chinese Journal of Zoonoses 2024;40(4):369-376
H9N2 is a low-pathogenic avian influenza subtype that has a significant impact on the global poultry industry.Since 1994,H9N2 has continuously mutated as a zoonotic pathogen in China,thus posing a severe threat to the poultry indus-try as well as human life and health.In particular,gene rearrangements and recombinations between H9N2 and other influenza viruses have increased the likelihood of avian influenza viruses crossing species barriers and infecting humans and other mam-mals,thereby posing new threats to global public health.Therefore,this article aims to provide a brief discussion of the epide-miology and vaccine research progress related to the H9N2 virus,serving as a valuable resource for safeguarding the economy of the poultry industry and global public health security.
6.Porcine SIRT5 promotes replication of foot and mouth disease virus type O in PK-15 cells
Guo-Hui CHEN ; Xi-Juan SHI ; Xin-Tian BIE ; Xing YANG ; Si-Yue ZHAO ; Da-Jun ZHANG ; Deng-Shuai ZHAO ; Wen-Qian YAN ; Ling-Ling CHEN ; Mei-Yu ZHAO ; Lu HE ; Hai-Xue ZHENG ; Xia LIU ; Ke-Shan ZHANG
Chinese Journal of Zoonoses 2024;40(5):421-429
The effect of porcine SIRT5 on replication of foot and mouth disease virus type O(FMDV-O)and the underlying regulatory mechanism were investigated.Western blot and RT-qPCR analyses were employed to monitor expression of endoge-nous SIRT5 in PK-15 cells infected with FMDV-O.Three pairs of SIRT5-specific siRNAs were synthesized.Changes to SIRT5 and FMDV-O protein and transcript levels,in addition to virus copy numbers,were measured by western blot and RT-qPCR analyses.PK-15 cells were transfected with a eukaryotic SIRT5 expression plasmid.Western blot and RT-qPCR analyses were used to explore the impact of SIRT5 overexpression on FMDV-O replication.Meanwhile,RT-qPCR analysis was used to detect the effect of SIRT5 overexpression on the mRNA expression levels of type I interferon-stimulated genes induced by SeV and FMDV-O.The results showed that expression of SIRT5 was up-regulated in PK-15 cells infected with FMDV-O and siRNA interfered with SIRT5 to inhibit FMDV-O replication.SIRT5 overexpression promoted FMDV-O replication.SIRT5 over-expression decreased mRNA expression levels of interferon-stimulated genes induced by SeV and FMDV-O.These results suggest that FMDV-O infection stimulated expression of SIRT5 in PK-15 cells,while SIRT5 promoted FMDV-O rep-lication by inhibiting production of type I interferon-stimula-ted genes.These findings provide a reference to further ex-plore the mechanism underlying the ability of porcine SIRT5 to promote FMDV-O replication.
7.The Cell Division Cycle 73(Cdc73)Deletion Mutant Inhibits Sexual Reproduction and Mitosis of Fission Yeast Cells
Meng-Nan LIU ; Xin BAI ; Wen YU ; Xin-Lin LI ; Xiang DING ; Yi-Ling HOU
Chinese Journal of Biochemistry and Molecular Biology 2024;40(6):807-818
The cdc73(cell division cycle 73)gene encodes the RNA polymerase Ⅱ cofactor Cdc73 in fis-sion yeast(Schizosaccharomyces Pombe),and is involved in G2 checkpoint activation and regulates the cell cycle.However,whether Cdc73 regulates cell mitotic dynamics is unknown.In this study,fluores-cent protein labeling and live cell imaging techniques were used to investigate the effects of cdc73 deletion on sexual reproduction and the dynamics of microtubules,actin,mitochondria,and histones during mito-sis.The results showed that in sexual reproduction,cdc73 deletion resulted in a 14.23%increase in the length of ascospores and a 64.08%decrease in the number of cells producing four spores.Analysis of the live cell imaging results revealed that,in mitosis,the elongation length of microtubules in anaphase was shortened by 11.21%,and the elongation time was reduced by 17.39%;the formation and contraction rates of actin rings decreased by 33.33%and 26.09%,respectively,and the formation and contraction times were prolonged by 58.00%and 40.38%,respectively.Meanwhile,the expression levels of actin ring,mitochondrion,and histones also increased.This study revealed the cdc73 deletion inhibits spindle elongation and delays actin ring formation and contraction in mitosis,which provides some scientific basis for further exploring the involvement of Cdc73 in regulating microtubule and actin dynamics in cell divi-sion.
8.Elesclomol-Cu Induces Cuproptosis in Human Acute Myeloid Leu-kemia Cells
Yan-Hua YU ; Huan-Juan LI ; Xin-Yi YANG ; Ling-Yan YU ; Xiang-Min TONG
Journal of Experimental Hematology 2024;32(2):389-394
Objective:To investigate the effects of elesclomol-Cu(ES-Cu)on the proliferation and cuproptosis of human acute myeloid leukemia(AML)cells.Methods:The effects of ES-Cu on the proliferation of AML cells and the AML cells pre-treated with ammonium tetrathiomolybdate(TTM)were examined by CCK-8 assay.The Calcein/PI kit was used to detected the changes in activity and cytotoxicity of AML cells induced by ES-Cu.Flow cytometry and Cytation3 fully automated cell imaging multifunctional detection system were used to analyze DCFH-DA fluorescence intensity,so as to determine the level of reactive oxygen species(ROS).The GSH and GSSG detection kits were used to measure the intracellular GSH content.Western blot was used to detected the expression of cuproptosis-related proteins ATP7B,FDX1,DLAT and DPYD.Results:ES-Cu inhibited the proliferation of Kasumi-1 and HL-60 cells in a concentration-dependent manner(rKasumi-1=-0.99,rHL-60=-0.98).As the concentration of ES-Cu increased,the level of intracellular ROS also increased(P<0.01-0.001).TTM could significantly reverse the inhibitory effect of ES-Cu on cell proliferation and its promoting effect on ROS.With the increase of ES-Cu concentration,the content of GSH was decreased(r=-0.98),and Western blot showed that the protein expressions of ATP7B,FDX1,DLAT and DPYD were significantly reduced(P<0.05).Conclusion:ES-Cu can induce cuproptosis in AML cells,which provides a new idea for the treatment of AML.
9.Clinical Significance of the Levels of Peripheral Blood Tregs and Cytokines IL-35,TGF-β and IL-10 in Hemophilia A Patients with FⅧ Inhibitor
Hong-Xia HE ; Yan-Yan XIE ; Qing-Yun SUN ; Lin-Hong WANG ; Yi-Wen ZHU ; JIE LI ; Xin WANG ; Zhao-Ling DENG ; Mei-Rong YANG ; Zhen-Yu YAN
Journal of Experimental Hematology 2024;32(4):1197-1200
Objective:To explore the levels of regulatory T cells(Tregs)and cytokines IL-35,TGF-β and IL-10 in peripheral blood of hemophilia A(HA)patients with F Ⅷ inhibitor and their clinical significance.Methods:43 HA patients admitted to the Hematology Department of the Affiliated Hospital of North China University of Science and Technology from October 2019 to December 2020 were selected,including 6 cases with F Ⅷ inhibitor and 37 cases without FⅧ inhibitor.In addition,20 healthy males who underwent physical examinations were selected as healthy controls.Flow cytometry was used to detect the levels of CD4+CD25+CD127-Tregs in peripheral blood of the HA patients and healthy controls,and ELISA assay was used to detect the expression levels of IL-35,TGF-β and IL-10 in serum,and their differences between different groups were compared.Results:Compared with the healthy control group,the level of Tregs in HA patients was decreased,and the level of Tregs in the FⅧ inhibitor positive group was the lowest,the difference was statistically significant(P<0.05).There was no significant difference in the expression level of Tregs in HA patients of different severity levels.The serum IL-35,TGF-β,and IL-10 levels in both FⅧ inhibitor negative and positive groups were significantly lower than those in healthy control group,and those in FⅧ inhibitor positive group were significantly lower than those in FⅧ inhibitor negative group(all P<0.05).Conclusion:The decrease of Tregs,IL-35,TGF-β,and IL-10 levels in HA patients may be related to the formation of FⅧ inhibitors.
10.Analysis of Therapeutic Efficacy and Adverse Prognostic Factors of Secondary Central Nervous System Lymphoma
Ning WANG ; Fei-Li CHEN ; Yi-Lan HUANG ; Xin-Miao JIANG ; Xiao-Juan WEI ; Si-Chu LIU ; Yan TENG ; Lu PAN ; Ling HUANG ; Han-Guo GUO ; Zhan-Li LIANG ; Wen-Yu LI
Journal of Experimental Hematology 2024;32(5):1420-1426
Objective:To explore the therapeutic efficacy and prognostic factors of induction therapy for secondary central nervous system lymphoma(SCNSL).Methods:Clinical data of patients diagnosed with SCNSL from 2010 to 2021 at Guangdong Provincial People's Hospital were retrospectively collected.A retrospective cohort study was performed on all and grouped patients to analyze the efficacy and survival.Multivariate logistic regression analysis was used to explore the adverse prognostic factors.Results:Thirty-seven diffuse large B-cell lymphoma patients with secondary central involvement were included in the research.Their 2-year overall survival(OS)rate was 46.01%and median survival time was 18.1 months.The 2-year OS rates of HD-MTX group and TMZ group were 34.3%and 61%,median survival time were 8.7 and 38.3 months,and median progression-free survival time were 8.1 and 47 months,respectively.Multivariate logistic regression analysis showed that age,sex,IPI,Ann Arbor stage were correlated with patient survival time.The median survival time of patients with CD79B,KMT2D,CXCR4.ERBB2,TBL1XR1,BTG2,MYC,MYD88,and PIM1 mutations was 8.2 months,which was lower than the overall level.Conclusion:HD-MTX combined with TMZ as the first-line strategy may improve patient prognosis,and early application of gene sequencing is beneficial for evaluating prognosis.

Result Analysis
Print
Save
E-mail