1.The multi-center mid-term clinical outcomes of combined complete preservation of chordal structure mitral valve replacement with total anatomic complete arterial myocardial revascularization for coronary patients with moderate-to-severe or severe ischemic mitral regurgitation
Ke GUO ; Xujun CHEN ; Baoshi ZHENG ; Chao SHI ; Keli HUANG ; Yong CAO ; Chengquan LIAO ; Jingwei CHEN ; Yu LIN ; Chengxin LIU ; Quansheng CAO ; Lin SHEN ; Zhendong WANG
Chinese Journal of Surgery 2025;63(1):58-67
Objective:To evaluate the clinical outcomes of combined complete preservation of chordal structure mitral valve replacement (C-MVR) with total anatomical arterial myocardial revascularization (TACR) in coronary patients with moderate-to-severe or severe ischemic mitral regurgitation (IMR).Methods:This is a retrospective multi-center case series study. Data were retrospectively collected from 127 patients with coronary artery disease with moderate to severe or severe IMR who received TACR with C-MVR from July 2015 to April 2024 in 13 hospitals in China. There were 90 males and 37 females, aged (56.5±10.7) years (range: 33 to 74 years). Perioperative data and follow-up data including left ventricular ejection fraction, left ventricular end-diastolic diameter, and patency rate of arterial grafts of patients were collected. Comparisons were made using paired sample t-test or χ2 test. Results:In this cohort of 127 patients, 67 underwent concurrent tricuspid valve repair. During surgery, 113 grafts of the left internal mammary artery (LIMA), 127 grafts of the left radial artery, 80 grafts of the right radial artery, and 110 grafts of the right internal mammary artery (RIMA) were harvested. The number of the distal anastomosis was 4.2±0.4 (range: 3 to 5). The aortic cross-clamp time and cardiopulmonary bypass time were (97.5±23.4) minutes (range: 90 to 161 minutes) and (145.4±19.2) minutes (range: 101 to 210 minutes), respectively. There was one operative death. Intraoperative placement of an intra-aortic balloon pump was performed in 21 patients to improve the left ventricular ejection. No sternal ischemic occurred. All patients completed follow-up, with a mean follow-up period of (64.3±7.5) months (range: 4 to 110 months). No major cerebrovascular events occurred during the follow-up period, and all patients survived. Left ventricular ejection fraction improved postoperatively (55.0%±5.3% vs. 41.0%±15.3%, t=17.23, P<0.01). The proportion of patients with New York Heart Association functional class ≤2 increased postoperatively (23.6% (30/127) vs. 87.3% (110/126), χ2=103.77, P<0.01). The proportion of patients with Canadian Cardiovascular Society Angina Classification ≤3 decreased postoperatively (4.8% (6/126) vs. 78.7% (100/127), χ2=142.19, P<0.01). The left ventricular end-diastolic diameter decreased postoperatively ((5.70±4.50) cm vs. (6.10±0.23) cm, t=12.15, P<0.01). Coronary multi-detector computed tomography angiography (MDCTA) follow-up was conducted for (60.5±11.7) months (range: 6 to 109 months) postoperatively. MDCTA confirmed the patency rates of the grafts: 96.4% (108/112) for the LIMA grafts, 88.9% (112/126) for the left radial artery grafts, 93.7% (74/79) for the right radial artery grafts, and 90.9% (100/110) for the free RIMA grafts. No significant differences in graft patency rates were observed between the arterial grafts ( χ2=5.24, P=0.155). Conclusion:The results of this multi-centre study demonstrate satisfactory mid-term results of C-MVR with TACR for the treatment of coronary artery disease with moderate to severe or severe IMR.
2.Applications of Vaterite in Drug Loading and Controlled Release
Xiao-Hui SONG ; Ming-Yu PAN ; Jian-Feng XU ; Zheng-Yu HUANG ; Qing PAN ; Qing-Ning LI
Progress in Biochemistry and Biophysics 2025;52(1):162-181
Currently, the drug delivery system (DDS) based on nanomaterials has become a hot interdisciplinary research topic. One of the core issues is drug loading and controlled release, in which the key lever is carriers. Vaterite, as an inorganic porous nano-material, is one metastable structure of calcium carbonate, full of micro or nano porous. Recently, vaterite has attracted more and more attention, due to its significant advantages, such as rich resources, easy preparations, low cost, simple loading procedures, good biocompatibility and many other good points. Vaterite, gained from suitable preparation strategies, can not only possess the good drug carrying performance, like high loading capacity and stable loading efficiency, but also improve the drug release ability, showing the better drug delivery effects, such as targeting release, pH sensitive release, photothermal controlled release, magnetic assistant release, optothermal controlled release. At the same time, the vaterite carriers, with good safety itself, can protect proteins, enzymes, or other drugs from degradation or inactivation, help imaging or visualization with loading fluorescent drugs in vitro and in vivo, and play synergistic effects with other therapy approaches, like photodynamic therapy, sonodynamic therapy, and thermochemotherapy. Latterly, some renewed reports in drug loading and controlled release have led to their widespread applications in diverse fields, from cell level to clinical studies. This review introduces the basic characteristics of vaterite and briefly summarizes its research history, followed by synthesis strategies. We subsequently highlight recent developments in drug loading and controlled release, with an emphasis on the advantages, quantity capacity, and comparations. Furthermore, new opportunities for using vaterite in cell level and animal level are detailed. Finally, the possible problems and development trends are discussed.
3.The multi-center mid-term clinical outcomes of combined complete preservation of chordal structure mitral valve replacement with total anatomic complete arterial myocardial revascularization for coronary patients with moderate-to-severe or severe ischemic mitral regurgitation
Ke GUO ; Xujun CHEN ; Baoshi ZHENG ; Chao SHI ; Keli HUANG ; Yong CAO ; Chengquan LIAO ; Jingwei CHEN ; Yu LIN ; Chengxin LIU ; Quansheng CAO ; Lin SHEN ; Zhendong WANG
Chinese Journal of Surgery 2025;63(1):58-67
Objective:To evaluate the clinical outcomes of combined complete preservation of chordal structure mitral valve replacement (C-MVR) with total anatomical arterial myocardial revascularization (TACR) in coronary patients with moderate-to-severe or severe ischemic mitral regurgitation (IMR).Methods:This is a retrospective multi-center case series study. Data were retrospectively collected from 127 patients with coronary artery disease with moderate to severe or severe IMR who received TACR with C-MVR from July 2015 to April 2024 in 13 hospitals in China. There were 90 males and 37 females, aged (56.5±10.7) years (range: 33 to 74 years). Perioperative data and follow-up data including left ventricular ejection fraction, left ventricular end-diastolic diameter, and patency rate of arterial grafts of patients were collected. Comparisons were made using paired sample t-test or χ2 test. Results:In this cohort of 127 patients, 67 underwent concurrent tricuspid valve repair. During surgery, 113 grafts of the left internal mammary artery (LIMA), 127 grafts of the left radial artery, 80 grafts of the right radial artery, and 110 grafts of the right internal mammary artery (RIMA) were harvested. The number of the distal anastomosis was 4.2±0.4 (range: 3 to 5). The aortic cross-clamp time and cardiopulmonary bypass time were (97.5±23.4) minutes (range: 90 to 161 minutes) and (145.4±19.2) minutes (range: 101 to 210 minutes), respectively. There was one operative death. Intraoperative placement of an intra-aortic balloon pump was performed in 21 patients to improve the left ventricular ejection. No sternal ischemic occurred. All patients completed follow-up, with a mean follow-up period of (64.3±7.5) months (range: 4 to 110 months). No major cerebrovascular events occurred during the follow-up period, and all patients survived. Left ventricular ejection fraction improved postoperatively (55.0%±5.3% vs. 41.0%±15.3%, t=17.23, P<0.01). The proportion of patients with New York Heart Association functional class ≤2 increased postoperatively (23.6% (30/127) vs. 87.3% (110/126), χ2=103.77, P<0.01). The proportion of patients with Canadian Cardiovascular Society Angina Classification ≤3 decreased postoperatively (4.8% (6/126) vs. 78.7% (100/127), χ2=142.19, P<0.01). The left ventricular end-diastolic diameter decreased postoperatively ((5.70±4.50) cm vs. (6.10±0.23) cm, t=12.15, P<0.01). Coronary multi-detector computed tomography angiography (MDCTA) follow-up was conducted for (60.5±11.7) months (range: 6 to 109 months) postoperatively. MDCTA confirmed the patency rates of the grafts: 96.4% (108/112) for the LIMA grafts, 88.9% (112/126) for the left radial artery grafts, 93.7% (74/79) for the right radial artery grafts, and 90.9% (100/110) for the free RIMA grafts. No significant differences in graft patency rates were observed between the arterial grafts ( χ2=5.24, P=0.155). Conclusion:The results of this multi-centre study demonstrate satisfactory mid-term results of C-MVR with TACR for the treatment of coronary artery disease with moderate to severe or severe IMR.
4.Cloning, subcellular localization and expression analysis of SmIAA7 gene from Salvia miltiorrhiza
Yu-ying HUANG ; Ying CHEN ; Bao-wei WANG ; Fan-yuan GUAN ; Yu-yan ZHENG ; Jing FAN ; Jin-ling WANG ; Xiu-hua HU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2025;60(2):514-525
The auxin/indole-3-acetic acid (Aux/IAA) gene family is an important regulator for plant growth hormone signaling, involved in plant growth, development, as well as response to environmental stresses. In the present study, we identified
5.Integrated multiomics reveal mechanism of Aidi Injection in attenuating doxorubicin-induced cardiotoxicity.
Yan-Li WANG ; Yu-Jie TU ; Jian-Hua ZHU ; Lin ZHENG ; Yong HUANG ; Jia SUN ; Yong-Jun LI ; Jie PAN ; Chun-Hua LIU ; Yuan LU
China Journal of Chinese Materia Medica 2025;50(8):2245-2259
The combination of Aidi Injection(ADI) and doxorubicin(DOX) is a common strategy in the treatment of cancer, which can achieve synergistic anti-tumor effects while attenuating the cardiotoxicity caused by DOX. This study aims to investigate the mechanism of ADI in attenuating DOX-induced cardiotoxicity by multi-omics. DOX was used to induce cardiotoxicity in mice, and the cardioprotective effects of ADI were evaluated based on biochemical indicators and pathological changes. Based on the results, transcriptomics, proteomics, and metabolomics were employed to analyze the changes of endogenous substances in different physiological states. Furthermore, data from multiple omics were integrated to screen key regulatory pathways by which ADI attenuated DOX-induced cardiotoxicity, and important target proteins were selected for measurement by ELISA kits and immunohistochemical analysis. The results showed that ADI significantly reduced the levels of cardiac troponin T(cTnT) and N-terminal pro-B-type natriuretic peptide(NT-proBNP) and effectively ameliorated myocardial fibrosis and intracellular vacuolization, indicating that ADI showed therapeutic effect on DOX-induced cardiotoxicity. The transcriptomics analysis screened out a total of 400 differentially expressed genes(DEGs), which were mainly enriched in inflammatory response, oxidative stress, and myocardial fibrosis. After proteomics analysis, 70 differentially expressed proteins were selected, which were mainly enriched in the inflammatory response, cardiac function, and energy metabolism. A total of 51 differentially expressed metabolites were screened by the metabolomics analysis, and they were mainly enriched in multiple signaling pathways, including the inflammatory response, lipid metabolism, and energy metabolism. The integrated data of multiple omics showed that linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism pathways played an important role in DOX-induced cardiotoxicity, and ADI may exert therapeutic effects by modulating these pathways. Target validation experiments suggested that ADI significantly regulated abnormal protein levels of cyclooxygenase-1(COX-1), cyclooxygenase-2(COX-2), prostaglandin H2(PGH2), and prostaglandin D2(PGD2) in the model group. In conclusion, ADI may attenuate DOX-induced cardiotoxicity by regulating linoleic acid metabolism, arachidonic acid metabolism, and glycerophosphate metabolism, thus alleviating inflammation of the body.
Doxorubicin/toxicity*
;
Animals
;
Mice
;
Cardiotoxicity/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Proteomics
;
Metabolomics
;
Injections
;
Humans
;
Multiomics
6.Anti-hepatic fibrosis effect and mechanism of Albiziae Cortex-Tribuli Fructus based on Nrf2/NLRP3/caspase-1 pathway.
Meng-Yuan ZHENG ; Jing-Wen HUANG ; Si-Chen JIANG ; Ze-Yu XIE ; Yi-Xiao XU ; Li YAO
China Journal of Chinese Materia Medica 2025;50(15):4129-4140
This study aims to explore whether Albiziae Cortex-Tribuli Fructus can exert an anti-hepatic fibrosis effect by regulating the nuclear factor E2-related factor 2(Nrf2)/NOD-like receptor protein 3(NLRP3)/cysteine protease-1(caspase-1) pathway and analyze its potential mechanism. In the in vivo experiment, a mouse model of hepatic fibrosis was established by subcutaneous injection of carbon tetrachloride. The levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), collagen type Ⅳ(ColⅣ), laminin(LN), procollagen type Ⅲ(PCⅢ), and hyaluronic acid(HA) in the serum of mice were measured using a fully automated biochemical analyzer and ELISA. Hematoxylin and eosin(HE) and Masson staining were used to observe inflammation and collagen fiber deposition in the liver tissue. Western blot and RT-qPCR were employed to detect the protein and mRNA expression of collagen type Ⅰ(collagen Ⅰ), α-smooth muscle actin(α-SMA), Nrf2, NLRP3, gasdermin D(GSDMD), and caspase-1 in the hepatic tissue. In the in vitro experiment, human hepatic stellate cells(HSC-LX2) were pretreated with Nrf2 agonist or inhibitor, followed by the addition of blank serum, AngⅡ + blank serum, and AngⅡ + Albiziae Cortex-Tribuli Fructus-containing serum for intervention. Western blot was used to detect the protein expression of Nrf2, NLRP3, GSDMD, caspase-1, α-SMA, GSDMD-N, and apoptosis-associated speck-like protein(ASC) in cells. DCFH-DA fluorescence probe was used to detect the cellular ROS levels. The results from the in vivo experiment showed that, compared with the model group, Albiziae Cortex-Tribuli Fructus significantly reduced the serum levels of AST, ALT, ColⅣ, LN, PCⅢ, and HA, reduced the infiltration of inflammatory cells and collagen fiber deposition in the liver tissue, significantly upregulated the protein and mRNA expression of Nrf2 in the liver tissue, and significantly downregulated the protein and mRNA expression of collagen I, α-SMA, NLRP3, GSDMD, and caspase-1 in the liver tissue. The results from the in vitro experiment showed that Nrf2 activation decreased the protein expression of NLRP3, GSDMD, caspase-1, α-SMA, GSDMD-N, ASC, and ROS levels in HSC-LX2, while Nrf2 inhibition showed the opposite trend. Furthermore, Albiziae Cortex-Tribuli Fructus-containing serum directly decreased the expression of the above proteins and ROS levels. In conclusion, Albiziae Cortex-Tribuli Fructus can effectively improve hepatic fibrosis, and its mechanism of action may involve inhibiting pyroptosis through the regulation of the Nrf2/NLRP3/caspase-1 pathway.
Animals
;
NF-E2-Related Factor 2/genetics*
;
Liver Cirrhosis/genetics*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Caspase 1/genetics*
;
Male
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Liver/metabolism*
;
Mice, Inbred C57BL
;
Plant Extracts
;
Tribulus
7.Domestication progress of endangered Chinese medicinal material Fritillariae Cirrhosae Bulbus.
Ting XIAO ; Ming-Hao YANG ; Qiu-Ling WANG ; Qiang LYU ; Yu-Qing ZHENG ; Lian-Cheng XU ; Ma YU ; Jian-He WEI
China Journal of Chinese Materia Medica 2025;50(16):4483-4489
Fritillariae Cirrhosae Bulbus is the dried bulb of perennial herbaceous plants in the Fritillaria genus(Liliaceae family) and is a representative traditional Chinese medicinal material with distinctive regional characteristics. Clinically, it is widely used in the treatment of dry cough, bronchial asthma, and other respiratory diseases, possessing significant medicinal and economic value and being highly esteemed in TCM. Currently, Fritillariae Cirrhosae Bulbus primarily relies on wild harvesting. However, due to excessive collection, its wild resources have drastically declined, and all source species have been classified as category Ⅱ in the List of National Key Protected Wild Plants, exacerbating the supply-demand imbalance in the market. To mitigate this issue, large-scale cultivation through the domestication of wild Fritillariae Cirrhosae Bulbus has become an inevitable trend. However, its strict environmental requirements, low propagation efficiency, high seedling mortality, and immature cultivation techniques have severely hindered industrialization. This study investigates the domestication process of Fritillariae Cirrhosae Bulbus, focusing on seed propagation, seedling cultivation, and medicinal material production. It also reviews the species and distribution of wild resources, their endangered status, market supply-demand dynamics, and the historical and current development of domestication. The findings indicate that enhancing propagation efficiency, optimizing cultivation models, and distinguishing between seed propagation and medicinal material production are key measures to accelerate the industrialization of domesticated Fritillariae Cirrhosae Bulbus. This research aims to promote the industrialization of Fritillariae Cirrhosae Bulbus domestication and provide a reference model for the conservation and sustainable utilization of rare and endangered medicinal plant resources.
Fritillaria/chemistry*
;
Endangered Species
;
Plants, Medicinal/growth & development*
;
Drugs, Chinese Herbal/economics*
;
China
8.Cytoplasmic and nuclear NFATc3 cooperatively contributes to vascular smooth muscle cell dysfunction and drives aortic aneurysm and dissection.
Xiu LIU ; Li ZHAO ; Deshen LIU ; Lingna ZHAO ; Yonghua TUO ; Qinbao PENG ; Fangze HUANG ; Zhengkun SONG ; Chuanjie NIU ; Xiaoxia HE ; Yu XU ; Jun WAN ; Peng ZHU ; Zhengyang JIAN ; Jiawei GUO ; Yingying LIU ; Jun LU ; Sijia LIANG ; Shaoyi ZHENG
Acta Pharmaceutica Sinica B 2025;15(7):3663-3684
This study investigated the role of the nuclear factor of activated T cells c3 (NFATc3) in vascular smooth muscle cells (VSMCs) during aortic aneurysm and dissection (AAD) progression and the underlying molecular mechanisms. Cytoplasmic and nuclear NFATc3 levels were elevated in human and mouse AAD. VSMC-NFATc3 deletion reduced thoracic AAD (TAAD) and abdominal aortic aneurysm (AAA) progression in mice, contrary to VSMC-NFATc3 overexpression. VSMC-NFATc3 deletion reduced extracellular matrix (ECM) degradation and maintained the VSMC contractile phenotype. Nuclear NFATc3 targeted and transcriptionally upregulated matrix metalloproteinase 9 (MMP9) and MMP2, promoting ECM degradation and AAD development. NFATc3 promoted VSMC phenotypic switching by binding to eukaryotic elongation factor 2 (eEF2) and inhibiting its phosphorylation in the VSMC cytoplasm. Restoring eEF2 reversed the beneficial effects in VSMC-specific NFATc3-knockout mice. Cabamiquine-targets eEF2 and inhibits protein synthesis-inhibited AAD development and progression in VSMC-NFATc3-overexpressing mice. VSMC-NFATc3 promoted VSMC switch and ECM degradation while exacerbating AAD development, making it a novel potential therapeutic target for preventing and treating AAD.
9.The protein arginine methyltransferase PRMT1 ameliorates cerebral ischemia-reperfusion injury by suppressing RIPK1-mediated necroptosis and apoptosis.
Tengfei LIU ; Gan HUANG ; Xin GUO ; Qiuran JI ; Lu YU ; Runzhe ZONG ; Yiquan LI ; Xiaomeng SONG ; Qingyi FU ; Qidi XUE ; Yi ZHENG ; Fanshuo ZENG ; Ru SUN ; Lin CHEN ; Chengjiang GAO ; Huiqing LIU
Acta Pharmaceutica Sinica B 2025;15(8):4014-4029
Receptor-interacting protein kinase 1 (RIPK1) plays an essential role in regulating the necroptosis and apoptosis in cerebral ischemia-reperfusion (I/R) injury. However, the regulation of RIPK1 kinase activity after cerebral I/R injury remains largely unknown. In this study, we found the downregulation of protein arginine methyltransferase 1 (PRMT1) was induced by cerebral I/R injury, which negatively correlated with the activation of RIPK1. Mechanistically, we proved that PRMT1 directly interacted with RIPK1 and catalyzed its asymmetric dimethylarginine, which then blocked RIPK1 homodimerization and suppressed its kinase activity. Moreover, pharmacological inhibition or genetic ablation of PRMT1 aggravated I/R injury by promoting RIPK1-mediated necroptosis and apoptosis, while PRMT1 overexpression protected against I/R injury by suppressing RIPK1 activation. Our findings revealed the molecular regulation of RIPK1 activation and demonstrated PRMT1 would be a potential therapeutic target for the treatment of ischemic stroke.
10.Mechanism of Aerobic Exercise in Delaying Brain Aging in Aging Mice by Regulating Tryptophan Metabolism
De-Man ZHANG ; Chang-Ling WEI ; Yuan-Ting ZHANG ; Yu JIN ; Xiao-Han HUANG ; Min-Yan ZHENG ; Xue LI
Progress in Biochemistry and Biophysics 2025;52(6):1362-1372
ObjectiveTo explore the molecular mechanism of aerobic exercise to improve hippocampal neuronal degeneration by regulating tryptophan metabolic pathway. Methods60 SPF-grade C57BL/6J male mice were divided into a young group (2 months old, n=30) and a senile group (12 months old, n=30), and each group was further divided into a control group (C/A group, n=15) and an exercise group (CE/AE group, n=15). An aerobic exercise program was used for 8 weeks. Learning memory ability was assessed by Y-maze, and anxiety-depression-like behavior was detected by absent field experiment. Hippocampal Trp levels were measured by GC-MS. Nissl staining was used to observe the number and morphology of hippocampal neurons, and electron microscopy was used to detect synaptic ultrastructure. ELISA was used to detect the levels of hippocampal Trp,5-HT, Kyn, KATs, KYNA, KMO, and QUIN; Western blot was used to analyze the activities of TPH2, IDO1, and TDO enzymes. ResultsGroup A mice showed significant decrease in learning and memory ability (P<0.05) and increase in anxiety and depressive behaviors (P<0.05); all of AE group showed significant improvement (P<0.05). Hippocampal Trp levels decreased in group A (P<0.05) and increased in AE group (P<0.05). Nidus vesicles were reduced and synaptic structures were degraded in group A (P<0.05), and both were significantly improved in group AE (P<0.05). The levels of Trp, 5-HT, KATs, and KYNA were decreased (P<0.05) and the levels of Kyn, KMO, and QUIN were increased (P<0.05) in group A. The activity of TPH2 was decreased (P<0.05), and the activities of IDO1 and TDO were increased (P<0.05). The AE group showed the opposite trend. ConclusionThe aging process significantly reduces the learning memory ability and increases the anxiety-depression-like behavior of mice, and leads to the reduction of the number of nidus vesicles and degenerative changes of synaptic structure in the hippocampus, whereas aerobic exercise not only effectively enhances the spatial learning memory ability and alleviates the anxiety-depression-like behavior of aging mice, but also improves the morphology and structure of neurons in hippocampal area, which may be achieved by the mechanism of regulating the tryptophan metabolic pathway.

Result Analysis
Print
Save
E-mail