1.Diagnostic Techniques and Risk Prediction for Cardiovascular-kidney-metabolic (CKM) Syndrome
Song HOU ; Lin-Shan ZHANG ; Xiu-Qin HONG ; Chi ZHANG ; Ying LIU ; Cai-Li ZHANG ; Yan ZHU ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(10):2585-2601
Cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic disorders are the 3 major chronic diseases threatening human health, which are closely related and often coexist, significantly increasing the difficulty of disease management. In response, the American Heart Association (AHA) proposed a novel disease concept of “cardiovascular-kidney-metabolic (CKM) syndrome” in October 2023, which has triggered widespread concern about the co-treatment of heart and kidney diseases and the prevention and treatment of metabolic disorders around the world. This review posits that effectively managing CKM syndrome requires a new and multidimensional paradigm for diagnosis and risk prediction that integrates biological insights, advanced technology and social determinants of health (SDoH). We argue that the core pathological driver is a “metabolic toxic environment”, fueled by adipose tissue dysfunction and characterized by a vicious cycle of systemic inflammation and oxidative stress, which forms a common pathway to multi-organ injury. The at-risk population is defined not only by biological characteristics but also significantly impacted by adverse SDoH, which can elevate the risk of advanced CKM by a factor of 1.18 to 3.50, underscoring the critical need for equity in screening and care strategies. This review systematically charts the progression of diagnostic technologies. In diagnostics, we highlight a crucial shift from single-marker assessments to comprehensive multi-marker panels. The synergistic application of traditional biomarkers like NT-proBNP (reflecting cardiac stress) and UACR (indicating kidney damage) with emerging indicators such as systemic immune-inflammation index (SII) and Klotho protein facilitates a holistic evaluation of multi-organ health. Furthermore, this paper explores the pivotal role of non-invasive monitoring technologies in detecting subclinical disease. Techniques like multi-wavelength photoplethysmography (PPG) and impedance cardiography (ICG) provide a real-time window into microcirculatory and hemodynamic status, enabling the identification of early, often asymptomatic, functional abnormalities that precede overt organ failure. In imaging, progress is marked by a move towards precise, quantitative evaluation, exemplified by artificial intelligence-powered quantitative computed tomography (AI-QCT). By integrating AI-QCT with clinical risk factors, the predictive accuracy for cardiovascular events within 6 months significantly improves, with the area under the curve (AUC) increasing from 0.637 to 0.688, demonstrating its potential for reclassifying risk in CKM stage 3. In the domain of risk prediction, we trace the evolution from traditional statistical tools to next-generation models. The new PREVENT equation represents a major advancement by incorporating key kidney function markers (eGFR, UACR), which can enhance the detection rate of CKD in primary care by 20%-30%. However, we contend that the future lies in dynamic, machine learning-based models. Algorithms such as XGBoost have achieved an AUC of 0.82 for predicting 365-day cardiovascular events, while deep learning models like KFDeep have demonstrated exceptional performance in predicting kidney failure risk with an AUC of 0.946. Unlike static calculators, these AI-driven tools can process complex, multimodal data and continuously update risk profiles, paving the way for truly personalized and proactive medicine. In conclusion, this review advocates for a paradigm shift toward a holistic and technologically advanced framework for CKM management. Future efforts must focus on the deep integration of multimodal data, the development of novel AI-driven biomarkers, the implementation of refined SDoH-informed interventions, and the promotion of interdisciplinary collaboration to construct an efficient, equitable, and effective system for CKM screening and intervention.
2.Mechanism of regulating PI3K-Akt signaling pathway and inhibiting chondrocyte apoptosis to improve inflammation levels in rats with knee osteoarthritis by Shenzhuo Decoction.
Ye-Hang WANG ; Hong SONG ; Wang-Qin YU
China Journal of Chinese Materia Medica 2025;50(12):3389-3398
This study aims to investigate the action mechanism of Shenzhuo Decoction(SZT, i.e., Ganjiang Lingzhu Decoction) in treating knee osteoarthritis(KOA). Network pharmacology was used to analyze the key targets of SZT in the treatment of KOA. At the cellular experimental level, primary chondrocytes extracted from rats were used for in vitro validation. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) staining was employed to detect chondrocyte apoptosis in the knee joint. Western blot was performed to analyze the expression of the anti-apoptotic factor(Bcl2), the apoptosis marker gene Bax, and key proteins in the phosphoinositide 3-kinase(PI3K)-protein kinase B(Akt) signaling pathway. In animal experiments, 60 7-week-old male SD rats were used to establish a KOA model and randomly divided into a control group, a KOA model group, high-, medium-, and low-dose SZT groups, and a celecoxib group, with 10 rats in each group. Micro-CT was used to observe changes in bone mineral density and osteophytes at the articular cartilage surface. Hematoxylin-eosin(HE) staining and safranin O-fast green(SFO) staining were used to observe pathological changes in cartilage tissue. Immunohistochemistry was used to detect the expression of inflammatory factor matrix metalloproteinase 13(MMP13) and cartilage marker collagen Ⅱ. Quantitative reverse transcription-polymerase chain reaction(qRT-PCR) was used to detect the expression of chondrocyte marker SRY-box transcription factor 9(SOX9) and inflammatory markers matrix metalloproteinase 9(MMP9), interleukin-6(IL-6), interleukin-1β(IL-1β), and tumor necrosis factor-α(TNF-α). Cell experiments revealed that SZT effectively improved KOA, and the results of micro-CT and HE and SFO staining showed that compared with the control group, the model group had obvious formation of osteophytes on the joint surface, which became rough, with significant decreases in the trabecular bone volume fraction(BV/TV), trabecular number(Tb.N), and trabecular thickness(Tb.Th) and a significant increase in trabecular spacing(Tb.Sp). The SZT groups had few osteophytes and a smoother joint surface than the model group. Additionally, BV/TV, Tb.N, and Tb.Th were significantly increased, while Tb.Sp was gradually decreased. A SZT-component-KOA target network was constructed to locate the core targets in KOA treatment, which was further validated through in vivo and in vitro animal experiments. The immunohistochemistry results of the pathological section of rat joint tissue showed that compared with the control group, the model group had a significant increase in MMP13 and a decrease in collagen Ⅱ, while SZT could inhibit inflammation and strengthen the protection of collagen Ⅱ in articular cartilage. The qRT-PCR results showed that SZT could significantly inhibit the mRNA expression of IL-6, IL-1β, TNF-α, and MMP9 and upregulate the mRNA level of SOX9. The TUNEL detection results showed that in the lipopolysaccharide(LPS)-induced KOA model group, chondrocyte apoptosis was significantly increased, and the fluorescence intensity was significantly enhanced. SZT, however, significantly reduced the trend of chondrocyte apoptosis and decreased the fluorescence intensity. The Western blot results showed that SZT could effectively inhibit the phosphorylation level of proteins in the PI3K-Akt pathway, reduce the expression of Bax, increase the expression of Bcl2, and inhibit the degradation of SOX9. In conclusion, SZT may alleviate the degenerative damage of KOA by inhibiting the phosphorylated expression of key proteins in the PI3K-Akt signaling pathway, reducing the release of inflammatory factors, and inhibiting chondrocyte apoptosis.
Animals
;
Chondrocytes/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Osteoarthritis, Knee/physiopathology*
;
Rats, Sprague-Dawley
;
Rats
;
Apoptosis/drug effects*
;
Signal Transduction/drug effects*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/immunology*
;
Humans
3.Intervention mechanism of Yiqi Fumai Formula in mice with experimental heart failure based on "heart-gut axis".
Zi-Xuan ZHANG ; Yu-Zhuo WU ; Ke-Dian CHEN ; Jian-Qin WANG ; Yang SUN ; Yin JIANG ; Yi-Xuan LIN ; He-Rong CUI ; Hong-Cai SHANG
China Journal of Chinese Materia Medica 2025;50(12):3399-3412
This paper aimed to investigate the therapeutic effect and mechanism of action of the Yiqi Fumai Formula(YQFM), a kind of traditional Chinese medicine(TCM), on mice with experimental heart failure based on the "heart-gut axis" theory. Based on the network pharmacology integrated with the group collaboration algorithm, the active ingredients were screened, a "component-target-disease" network was constructed, and the potential pathways regulated by the formula were predicted and analyzed. Next, the model of experimental heart failure was established by intraperitoneal injection of adriamycin at a single high dose(15 mg·kg~(-1)) in BALB/c mice. After intraperitoneal injection of YQFM(lyophilized) at 7.90, 15.80, and 31.55 mg·d~(-1) for 7 d, the protective effects of the formula on cardiac function were evaluated using indicators such as ultrasonic electrocardiography and myocardial injury markers. Combined with inflammatory factors in the cardiac and colorectal tissue, as well as targeted assays, the relevant indicators of potential pathways were verified. Meanwhile, 16S rDNA sequencing was performed on mouse fecal samples using the Illumina platform to detect changes in gut flora and analyze differential metabolic pathways. The results show that the administration of injectable YQFM(lyophilized) for 7 d significantly increased the left ventricular end-systolic internal diameter, fractional shortening, and ejection fraction of cardiac tissue of mice with experimental heart failure(P<0.05). Moreover, markers of myocardial injury were significantly decreased(P<0.05), indicating improved cardiac function, along with significantly suppressed inflammatory responses in cardiac and intestinal tissue(P<0.05). Additionally, the species of causative organisms was decreased, and the homeostasis of gut flora was improved, involving a modulatory effect on PI3K-Akt signaling pathway-related inflammation in cardiac and colorectal tissue. In conclusion, YQFM can affect the "heart-gut axis" immunity through the homeostasis of the gut flora, thereby exerting a therapeutic effect on heart failure. This finding provides a reference for the combination of TCM and western medicine to prevent and treat heart failure based on the "heart-gut axis" theory.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Heart Failure/microbiology*
;
Mice
;
Mice, Inbred BALB C
;
Male
;
Disease Models, Animal
;
Gastrointestinal Microbiome/drug effects*
;
Heart/physiopathology*
;
Humans
;
Signal Transduction/drug effects*
4.Effect and mechanism of Xintong Granules in ameliorating myocardial ischemia-reperfusion injury in rats by regulating gut microbiota.
Yun-Jia WANG ; Ji-Dong ZHOU ; Qiu-Yu SU ; Jing-Chun YAO ; Rui-Qiang SU ; Guo-Fei QIN ; Gui-Min ZHANG ; Hong-Bao LIANG ; Shuai FENG ; Jia-Cheng ZHANG
China Journal of Chinese Materia Medica 2025;50(14):4003-4014
This study investigates the mechanism by which Xintong Granules improve myocardial ischemia-reperfusion injury(MIRI) through the regulation of gut microbiota and their metabolites, specifically short-chain fatty acids(SCFAs). Rats were randomly divided based on body weight into the sham operation group, model group, low-dose Xintong Granules group(1.43 g·kg~(-1)·d~(-1)), medium-dose Xintong Granules group(2.86 g·kg~(-1)·d~(-1)), high-dose Xintong Granules group(5.72 g·kg~(-1)·d~(-1)), and metoprolol group(10 mg·kg~(-1)·d~(-1)). After 14 days of pre-administration, the MIRI rat model was established by ligating the left anterior descending coronary artery. The myocardial infarction area was assessed using the 2,3,5-triphenyltetrazolium chloride(TTC) staining method. Apoptosis in tissue cells was detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) assay. Pathological changes in myocardial cells and colonic tissue were observed using hematoxylin-eosin(HE) staining. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), creatine kinase MB isoenzyme(CK-MB), and cardiac troponin T(cTnT) in rat serum were quantitatively measured using enzyme-linked immunosorbent assay(ELISA) kits. The activities of lactate dehydrogenase(LDH), creatine kinase(CK), and superoxide dismutase(SOD) in myocardial tissue, as well as the level of malondialdehyde(MDA), were determined using colorimetric assays. Gut microbiota composition was analyzed by 16S rDNA sequencing, and fecal SCFAs were quantified using gas chromatography-mass spectrometry(GC-MS). The results show that Xintong Granules significantly reduced the myocardial infarction area, suppressed cardiomyocyte apoptosis, and decreased serum levels of pro-inflammatory cytokines(TNF-α, IL-1β, and IL-6), myocardial injury markers(CK-MB, cTnT, LDH, and CK), and oxidative stress marker MDA. Additionally, Xintong Granules significantly improved intestinal inflammation in MIRI rats, regulated gut microbiota composition and diversity, and increased the levels of SCFAs(acetate, propionate, isobutyrate, etc.). In summary, Xintong Granules effectively alleviate MIRI symptoms. This study preliminarily confirms that Xintong Granules exert their inhibitory effects on MIRI by regulating gut microbiota imbalance and increasing SCFA levels.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Male
;
Myocardial Reperfusion Injury/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Apoptosis/drug effects*
;
Humans
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/genetics*
;
Malondialdehyde/metabolism*
5.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
6.Effects of alcoholic extract of Gnaphalium affine on oxidative stress and intestinal flora in rats with chronic obstructive pulmonary disease.
Da-Huai LIN ; Xiang-Li YE ; Guo-Hong YAN ; Kai-Ge WANG ; Yu-Qin ZHANG ; Huang LI
China Journal of Chinese Materia Medica 2025;50(15):4110-4119
The efficacy mechanism of the alcoholic extract of Gnaphalium affine was investigated by observing its influence on oxidative stress and intestinal flora in rats modeled for chronic obstructive pulmonary disease(COPD). UPLC-MS was used to evaluate the quality of the alcoholic extract of G. affine, and 72 rats were randomly divided into six groups, with COPD models established in five groups by cigarette smoke combined with airway drip lipopolysaccharide, and the rats were given the positive drug of Danlong Oral Solution, as well as low-, medium-, and high-doses alcoholic extract of G. affine, respectively. After two weeks of continuous gastric gavage, the body weights and general morphology observations were performed; HE staining and Masson staining were used to verify the effects of the alcoholic extract of G. affine on alveolar inflammation and collagen deposition area in COPD rats; the oxidative stress indexes CAT and GSH in serum and SOD and MDA in lung tissue of the rats were measured, and the mRNA expression of HO-1, Nrf2, and NQO1 were determined by qRT-PCR. The protein expressions of HO-1, Nrf2, and NQO1 were determined by the Western blot method, and the mechanism by which the alcoholic extract of G. affine affected oxidative stress in COPD rats was explored. Finally, the influence of G. affine on the changes in intestinal flora caused by COPD was studied by 16S rRNA sequencing. The results showed that a total of 121 chemical components were identified by UPLC-MS, including 70 positive and 51 negative ion modes. In animal experiments, it was found that the alcoholic extracts of G. affine were able to reduce the percentage of collagen deposition, affect the oxidative stress indexes such as CAT, GSH, SOD, MDA, as well as the mRNA and protein expression of Nrf2, HO-1, and NQO1. The 16S rRNA sequencing results showed an increase in the level of Lactobacillales and a decrease in the level of Desulfovibrio and Desulfovibrionales, suggesting that the alcoholic extracts of G. affine could reverse the changes in intestinal flora caused by COPD. In conclusion, the alcoholic extracts of G. affine may exert anti-COPD effects by affecting the oxidative stress pathway and modulating the changes in intestinal flora.
Animals
;
Oxidative Stress/drug effects*
;
Pulmonary Disease, Chronic Obstructive/genetics*
;
Rats
;
Male
;
Gastrointestinal Microbiome/drug effects*
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
NF-E2-Related Factor 2/metabolism*
;
Humans
;
Lung/metabolism*
7.Early clinical outcomes of 3D-printed individualised customised prostheses in hip revision combined severe bone defect.
Hong-Ping WANG ; Ming-You WANG ; Xiao-Qin YANG ; Zhuo-Dong TANG ; Xun-Zhou SONG ; Yu-Ping LAN
China Journal of Orthopaedics and Traumatology 2025;38(2):163-169
OBJECTIVE:
To explore the early clinical outcomes of 3D printed individualised customised prostheses for in hip revision in patients with combined severe bone defects.
METHODS:
Twenty-two patients from January 2021 to May 2023 underwent hip revision using 3D printed personalised customised prostheses were retrospective analyzed, including 10 males and 12 females, age 28 to 78 with a mean of (58.9±12.8) years old. All of patients were combined with severe bone defects (Parprosky type Ⅲ). Among of them, 9 patients had periprosthetic infections and 13 patients had aseptic prosthesis loosening. All patients were treated with a 3D printed personalised prosthesis protocol, patients with the periprosthetic infection received a second stage revision after infection control. The operation time, preoperative waiting time, intraoperative and postoperative complications were recorded, and the clinical efficacy were evaluated at the final follow-up using the visual analogue scale (VAS) for pain, the Harris hip score.
RESULTS:
One patient was lost to follow-up and the remaining 21 patients were followed up for 10 to 15 with a mean of (12.91±1.44) months after surgery. All patients completed surgery as planned, with an operative time of 135 to 390 with a mean of (165.4±39.3) minutes and a preoperative waiting time of 7 to 16 with a mean of (10.5±3.3) days. Regarding patient complications:one patient had a severe intraoperative periprosthetic femoral fracture due to the combination of severe osteoporosis; one patient had an intraoperative greater trochanteric femur fracture. At the latest follow-up, all patients had good position of the custom-made prosthesis and no loosening of the prosthesis;all patients had good wound healing and no local redness or swelling. The total Harris score at the final follow-up (85.86±7.04) was significantly improved compared to the preoperative (44.86±2.36), P<0.001. The VAS at the last follow-up (2.19±0.87) was significantly improved compared with preoperative (7.41±0.96), P<0.001.
CONCLUSION
The clinical efficacy of 3D-printed personalised customised prosthesis in combined severe bone defect hip revision is satisfactory, but due to the increased preoperative waiting time of the patients and certain risks, certain indications should be mastered when applying in the clinic.
Humans
;
Male
;
Female
;
Printing, Three-Dimensional
;
Middle Aged
;
Aged
;
Adult
;
Retrospective Studies
;
Hip Prosthesis
;
Arthroplasty, Replacement, Hip
;
Reoperation
;
Prosthesis Design
;
Treatment Outcome
9.Effects of respiratory training combined with swallowing function training on infants with bronchopulmonary dysplasia at a corrected gestational age of 6 months: a prospective study.
Ya-Qin DUAN ; Zhen-Yu LIAO ; Ji-Hong HU ; Shun-Qiu RUAN
Chinese Journal of Contemporary Pediatrics 2025;27(4):420-424
OBJECTIVES:
To study the effects of early respiratory training combined with swallowing function training on physical development and neurodevelopment at a corrected gestational age of 6 months in infants with bronchopulmonary dysplasia (BPD).
METHODS:
A total of 69 BPD infants who could not be fed completely orally were prospectively selected from the Department of Neonatology of Hunan Children's Hospital between January 2018 and January 2021. Based on a random number table, the infants were divided into a conventional group (35 cases) and a training group (34 cases) (with 8 cases lost to follow-up; the final follow-up included 31 cases in the training group and 30 cases in the conventional group). Both groups received routine clinical treatment and care, while the training group additionally received respiratory and swallowing function training until the infants could independently feed orally. The weight, length, Gesell Developmental Schedule (GDS) results, readmission rate, and multiple readmission rate (two or more admissions) were compared between the two groups at a corrected age of 6 months.
RESULTS:
At corrected gestational age of 6 months, the training group had higher weight, length, and GDS scores in personal-social, language, gross motor, fine motor, and adaptive development compared to the conventional group (P<0.05). The readmission rate and multiple readmission rate were lower in the training group compared to the conventional group (P<0.05).
CONCLUSIONS
Early respiratory training combined with swallowing function training for BPD infants in a neonatal intensive care unit setting helps improve physical and neurological development and reduces the readmission rate.
Humans
;
Bronchopulmonary Dysplasia/physiopathology*
;
Prospective Studies
;
Male
;
Female
;
Infant
;
Deglutition/physiology*
;
Gestational Age
;
Infant, Newborn
;
Breathing Exercises
;
Child Development
10.Clinical efficacy of endocrinotherapy combined with Shenqi Pills on patients with hormone-sensitive prostate cancer.
Yu-Hong XIE ; Gang YI ; Xiao-Wen YI ; Tong-Lin SUN ; Qun-Fang LIN ; Jun ZHOU ; Xin-Jun LUO ; Fang-Zhi FU ; Biao WANG ; Qin-Zheng WANG ; Lie ZHANG ; Yang YANG ; Rui-Song GAO ; Qing ZHOU
National Journal of Andrology 2025;31(4):341-348
OBJECTIVE:
The aim of this study is to explore the clinical efficacy and safety of endocrinotherapy combined with Shenqi Pills on hormone-sensitive prostate cancer (HSPC).
METHODS:
Eighty patients who were diagnosed with HSPC and renal-yang deficiency at the First Affiliated Hospital of Hunan University of Traditional Chinese Medicine and the Hospital of Traditional Chinese Medicine of Mayang Miao Autonomous County from 1st April 2021 to 30th April 2024 were randomly divided into 2 groups. The patients in the control group were treated with androgen deprivation therapy (ADT). And the patients in treatment group were treated with Shenqi Pills orally on the basis of the control group. The baseline data of the two groups were analyzed. After 36 months of treatment, the differences between the two groups were compared in terms of overall survival (OS), prostate-specific antigen (PSA) level, PSA response rate, Functional Assessment Scale for Prostate Cancer Therapy (FACT-P), Chinese medicine evidence scores, testosterone level and safety.
RESULTS:
A total of 80 study subjects were included in this study, including 42 cases in the treatment group and 38 cases in the control group. There was no statistical difference in the baseline data between the two groups before treatment (P>0.05). At the end of the observation period, a statistically significant difference in OS was found in the treatment group compared to the control group in the subgroup of patients with a disease duration ranged of 0-6 months (P<0.05). There was no statistically significant difference in PSA levels in the treatment group at 3 months (P>0.05). And the differences in the proportion of PSA50 (98.1% vs 91.4%), PSA90 (92.9% vs 84.6%) and the proportion of decrease in PSA (56.7% vs 33.8%) in the treatment group were found compared to those in the control group after 6 months of tre atment. After 12 months of treatment, the scores of FACT-4 and renal-yang deficiency in the treatment group were (95.28±7.93) and (15.73±5.70) respectively, compared to the scores in the control group ([85.46±10.12] and [18.20±4.27] (P<0.05). However, there was no significant difference in serum testosterone ([0.60±0.24] nmol/L vs [1.09±2.10] nmol/L) between the two groups (P>0.05). After 24 months of treatment, there were significant differences in in the FACT-4 total score ([97.95±7.54] vs [80.33±8.58]), renal-yang deficiency syndrome score ([14.64±5.15] vs [24.94±8.75]) between the treatment group and the control group (P<0.05). However, there was no significant difference in serum testosterone ( [0.73±1.01] nmol/L vs [0.59±0.25] nmol/L) between the two groups (P> 0.05). Better therapeutic results were showed in the treatment group in terms of total FACT-P score, physical situation score, social and family situation score, emotional state score, functional state score, additional score and renal-yang deficiency symptom score (P<0.05). After treatment, there was no serious adverse reaction in the course of treatment, and no obvious abnormality was found in the liver and kidney function of the patients from two groups.
CONCLUSION
Endocrinotherapy combined with Shenqi Pills is safe and effective in HSPC and can reduce the risk of death in HSPC patients, and the earlier the intervention, the longer the overall survival of the patients. In addition, this treatment regimen can increase the PSA response rate, improve patients' quality of life, and reduce the renal-yang deficiency syndrome score without the risk of elevating serum testosterone levels.
Humans
;
Male
;
Drugs, Chinese Herbal/therapeutic use*
;
Prostatic Neoplasms/drug therapy*
;
Androgen Antagonists/therapeutic use*
;
Prostate-Specific Antigen/blood*
;
Aged
;
Middle Aged
;
Treatment Outcome
;
Testosterone

Result Analysis
Print
Save
E-mail