1.Multidimensional analysis of accuracy of CTU, contrast-enhanced MRI and CEUS in qualitative diagnosis of renal space-occupying lesions
Linjie WU ; Ying YU ; Xiaojie BAI ; Zihao QI ; Hang ZHENG ; Zhongqiang GUO
Journal of Modern Urology 2025;30(1):48-52
[Objective] To compare the diagnostic accuracy of three imaging modalities, inlducing CT urography (CTU), contrast-enhanced MRI (CE-MRI), and contrast-enhanced ultrasound (CEUS) in the qualitative diagnosis of renal space-occupying lesions. [Methods] A retrospective analysis was performed on 542 patients with renal lesions confirmed by surgical pathology in our hospital during Jan.2019 and May 2024.The diagnostic results of CTU, CE-MRI and CEUS were compared and analyzed based on the patients' clinical and pathological data. [Results] The diagnostic accuracy rate of CTU, CE-MRI and CEUS were 84.50%, 83.14% and 86.14%, respectively.For the 161 patients who underwent all three examinations, CEUS was significantly more accurate than CTU (84.16% vs. 77.02%, P=0.018), while there was no significant difference between CTU or CEUS and CE-MRI (79.81%) (P>0.05). Further analysis found that for lesions ≤4 cm, the accuracy of the three examinations was as follows: CEUS=CTU 79.55%, CE-MRI 76.14%, with no significant difference (P>0.05). However, for lesions >4 cm, CEUS ranked the first, followed by CE-MRI and CTU (89.73% vs. 84.25% vs. 73.97%), and CEUS and CE-MRI were better than CTU (P<0.05). Additionally, for the diagnosis of clear cell renal carcinoma and benign renal space-occupying lesions, there was no statistically significant difference among the three imaging modalities (P>0.05), while for the qualitative diagnosis of non-clear cell renal carcinoma, CEUS ranked the first, followed by CE-MRI and CTU (83.87% vs. 74.19% vs. 56.45%), and CE-MRI and CEUS were better than CTU (P<0.05). [Conclusion] All of them have important diagnostic value, and the appropriate selection should be based on patients' specifc conditions.CEUS and CE-MRI are more accurate in the qualitative diagnosis of renal space-occupying lesions than CTU, especially for large lesions and non-clear cell carcinoma.
2.Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
Hang LIU ; Yu-Xin ZHU ; Si-Lin GUO ; Xin-Yun PAN ; Yuan-Jie XIE ; Si-Cong LIAO ; Xin-Wen DAI ; Ping SHEN ; Yu-Bo XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2376-2392
ObjectiveTraditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays. MethodsThis study employed network pharmacology to identify potential targets of PA in NB, followed by validation using molecular docking, molecular dynamics (MD) simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, SuperPred, and PharmMapper. Subsequently, potential targets were predicted by intersecting the results from these databases via Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. MD simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control. ResultsThe CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT, MAPK, and Ras signaling pathways. Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels. ConclusionIt was suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/AKT signaling pathway. These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.
3.Tetrahydropalmatine acts on α7nAChR to regulate inflammation and polarization of BV2 microglia.
Yan-Jun WANG ; Guo-Liang DAI ; Pei-Yao CHEN ; Hua-Xi HANG ; Xin-Fang BIAN ; Yu-Jie CHEN ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2025;50(11):3117-3126
Based on the α7 nicotinic acetylcholine receptor(α7nAChR), this study examined how tetrahydropalmatine(THP) affected BV2 microglia exposed to lipopolysaccharide(LPS), aiming to clarify the possible mechanism underlying the anti-depression effect of THP from the perspectives of preventing inflammation and regulating polarization. First, after molecular docking and determination of the content of Corydalis saxicola Bunting total alkaloids, THP was initially identified as a possible anti-depression component. The BV2 microglia model of inflammation was established with LPS. BV2 microglia were allocated into a normal group, a model group, low-and high-dose(20 and 40 μmol·L~(-1), respectively) THP groups, and a THP(20 μmol·L~(-1))+α7nAChR-specific antagonist MLA(1 μmol·L~(-1)) group. The CCK-8 assay was used to screen the safe concentration of THP. A light microscope was used to examine the morphology of the cells. Western blot and immunofluorescence were used to determine the expression of α7nAChR. qRT-PCR was performed to determine the mRNA levels of inducible nitric oxide synthase(iNOS), cluster of differentiation 86(CD86), suppressor of cytokine signaling 3(SOCS3), arginase-1(Arg-1), cluster of differentiation 206(CD206), tumor necrosis factor(TNF)-α, interleukin(IL)-6, and IL-1β. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. The experimental results showed that THP at concentrations of 40 μmol·L~(-1) and below had no effect on BV2 microglia. THP improved the morphology of BV2 microglia, significantly up-regulated the protein level of α7nAChR, significantly down-regulated the mRNA levels of iNOS, CD86, SOCS3, TNF-α, IL-6, and IL-1β, significantly up-regulated the mRNA levels of Arg-1 and CD206, and dramatically lowered the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. However, the antagonist MLA abolished the above-mentioned ameliorative effects of THP on LPS-treated BV2 microglia. As demonstrated by the aforementioned findings, THP protected LPS-treated BV2 microglia by regulating the M1/M2 polarization and preventing inflammation, which might be connected to the regulation of α7nAChR on BV2 microglia.
Berberine Alkaloids/chemistry*
;
alpha7 Nicotinic Acetylcholine Receptor/chemistry*
;
Microglia/metabolism*
;
Mice
;
Animals
;
Cell Line
;
Corydalis/chemistry*
;
Humans
;
Molecular Docking Simulation
;
Inflammation/drug therapy*
;
Nitric Oxide Synthase Type II/immunology*
;
Tumor Necrosis Factor-alpha/immunology*
4.Sinisan, a compound Chinese herbal medicine, alleviates acute colitis by facilitating colonic secretory cell lineage commitment and mucin production.
Ya-Jie CAI ; Jian-Hang LAN ; Shuo LI ; Yue-Ning FENG ; Fang-Hong LI ; Meng-Yu GUO ; Run-Ping LIU
Journal of Integrative Medicine 2025;23(4):429-444
OBJECTIVE:
Ulcerative colitis is closely associated with intestinal stem cell (ISC) loss and impaired intestinal mucus barrier. Sinisan (SNS), a compound Chinese herbal medicine, has a long history in the treatment of intestinal dysfunction, yet whether SNS can relieve acute experimental colitis by modulating ISC proliferation and secretory cell differentiation has not been studied. Our study tested the effect of SNS against acute colitis and focused on the mechanisms involving intestinal barrier recovery.
METHODS:
Network pharmacology analysis and blood entry component analysis of SNS were used to explore the underlying mechanism by which SNS affects the acute dextran sulfate sodium (DSS)-induced murine colitis model. RNA-sequencing was used to demonstrate the mechanism. Further, reverse transcription-quantitative polymerase chain reaction, immunofluorescence staining, and alcian blue and periodic acid-Schiff staining were performed in vivo and in the colonic organoids to investigate the cell lineage differentiation-related mechanism of SNS. Furthermore, potential active ingredients from SNS were predicted by network pharmacology analysis.
RESULTS:
SNS dramatically suppressed DSS-induced acute colonic inflammation in mice. RNA-sequencing analysis revealed downregulation of inflammation and apoptosis-related genes, and upregulation of lipid metabolism and proliferation-related genes, such as Irf7, Pparα, Clspn and Hspa5. Additionally, ISC renewal and intestinal secretory cell lineage commitment were significantly promoted by SNS both in vivo and in vitro in colonic organoids, leading to enhanced mucin expression. Furthermore, potential active ingredients from SNS that mediated inflammation, lipid metabolism, proliferation, apoptosis, stem cells and secretory cells were predicted using a network pharmacology approach.
CONCLUSION
Our study shed light on the underlying mechanism of SNS in attenuating acute colitis from the perspective of ISC renewal and secretory lineage cell differentiation, suggesting a of novel therapeutic strategy against colitis. Please cite this article as: Cai YJ, Lan JH, Li S, Feng YN, Li FH, Guo MY, et al. Sinisan, a compound Chinese herbal medicine, alleviates acute colitis by facilitating colonic secretory cell lineage commitment and mucin production. J Integr Med. 2025; 23(4): 429-444.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice
;
Colon/pathology*
;
Mucins/metabolism*
;
Mice, Inbred C57BL
;
Cell Differentiation/drug effects*
;
Male
;
Colitis/metabolism*
;
Cell Lineage/drug effects*
;
Dextran Sulfate
;
Stem Cells/drug effects*
;
Disease Models, Animal
5.Research status of mechanism of psilocybin in the treatment of treatment-resistant depression
Guang-Shun HUA ; Chen-Yang GUO ; Hang ZHANG ; Yu-Ting GUO ; Si-Miao GONG ; Yan YANG
The Chinese Journal of Clinical Pharmacology 2024;40(16):2428-2432
Refractory depression is a drug-resistant subtype of major depressive disorder for which there is a lack of effective and durable treatments.Seroxibine,the active substance in the mushroom Capsicum annuum,is a natural 5-hydroxytryptamine hallucinogen that activates the 5-hydroxytryptamine 2A receptor to mediate multiple aspects of antidepressant effects.In recent years,it has received renewed attention for its outstanding therapeutic effects in the treatment of refractory depression or other psychiatric disorders.Therefore,this paper summarizes the studies on neuroplasticity,brain neural connectivity network,neurotransmitters,immune factors,microbiota-gut-brain axis,and clinical efficacy of seloxipine in domestic and international literature,and explores the possible mechanisms of seloxipine's effect on refractory depression,with a view to providing theoretical basis for the clinical application of this drug.
6.Effects of Shugan Lipi decoction on intestinal flora in non-alcoholic steatohepatitis rats
Yuan-Yuan SHI ; Ya WANG ; Dan GUO ; Hang-Yu ZHONG ; Yun-Jie ZHENG ; Tao ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(17):2533-2537
Objective To explore the effect of Shugan Lipi decoction on inflammation and intestinal flora,Toll like receptor 4(TLR4),T cell immunoglobulin domain and mucin domain-3(Tim-3)in non-alcoholic steatohepatitis(NASH)rats.Methods The NASH model was established by feeding methionine and choline deficient diet for 4 weeks.SD rats were randomly divided into blank group(intragastric administration with 0.9%NaCl),model group(NASH model,intragastric administration with 0.9%NaCl),and experimental group(NASH model,intragastric administration with 6.18g·kg-1 Shugan Lipi decoction).Illumina sequencing by synthesis method was used to detect the 16S rRNA sequence of rat Intestinal microbiota.Western blot method was used to detect the expression levels of Tim-3 and TLR4 proteins.Enzyme-linked immunosorbent assay was used to detect tumor necrosis factor-α(TNF-α),interleukin(IL)-6 and IL-10 levels in each group of rats.Results After 4 weeks of medication,the relative abundance of Bacteroidetes in the blank,model and experimental groups were(47.96±10.52)%,(42.90±15.01)%and(57.15±10.99)%;the relative abundance of Firmicutes were(49.27±9.99)%,(53.06±11.47)%and(39.99±11.88)%;the relative expression levels of Tim-3 protein were 1.03±0.07,0.24±0.06 and 1.57±0.11;the relative expression levels of TLR4 protein were 1.04±0.11,3.23±0.33 and 0.94±0.27;the levels of TNF-α were(403.03±25.25),(576.87±60.29)and(385.16±37.67)pg·mL-1;the levels of IL-6 were(125.35±14.07),(189.75±34.30)and(113.71±18.35)pg·mL-1;the levels of IL-10 were(123.20±15.96),(66.71±11.94)and(119.54±10.57)pg·mL-1,respectively.The above indexes in the experimental group showed statistically significant differences compared with the model group(P<0.01,P<0.05).Conclusion Shugan Lipi decoction may regulate inflammatory cytokines by affecting intestinal flora and TLR4,Tim-3 protein expression,affect liver inflammatory response,and improve NASH.
7.Circular RNAs Involved in The Development of Nasopharyngeal Carcinoma
Si-Cheng ZUO ; Dan WANG ; Yong-Zhen MO ; Yu-Hang LIU ; Jiao-Di CAI ; Can GUO ; Fang XIONG ; Guo-Qun CHEN
Progress in Biochemistry and Biophysics 2024;51(4):809-821
Circular RNAs (circRNAs) are a kind of non-coding RNA (ncRNA) with covalent closed-loop structure. They have attracted more and more attention because of their high stability, evolutionary conservatism, and tissue expression specificity. It has shown that circRNAs are involved in the development of a variety of diseases including malignant tumors recently. Nasopharyngeal carcinoma (NPC) is a malignant tumor that occurs in the nasopharynx and has a unique ethnic and geographical distribution in South China and Southeast Asia. Epstein-Barr virus (EBV) infection is closely related to the development of NPC. Radiotherapy and chemotherapy are the mainstays of treatment for NPC. But tumor recurrence or distant metastasis is the leading cause of death in patients with NPC. Several studies have shown that circRNAs, as gene expression regulators, play an important role in NPC and affect the progression of NPC. This review mainly summarized the research status of abnormally expressed circRNAs in NPC and EBV-encoded circRNAs. We also discussed the possibility of circRNAs as a therapeutic target, diagnostic and prognostic marker for NPC.
8.Introduction and application of non-parametric regression method in medical research
Ya-Hang LIU ; Yong-Fu YU ; Guo-You QIN
Fudan University Journal of Medical Sciences 2024;51(2):280-284
This article introduced the basic theory of non-parametric regression and its application in medical and public health research for methodological reference.We conducted Cox proportional hazard models with restricted cubic splines using chronic disease management data from a Center for Disease Control and Prevention.We aimed to explore the separate and combined effects of mean fasting blood glucose level and glucose variability on all-cause mortality among individuals with type 2 diabetes.A non-linear association was observed between glucose variability and the risk of all-cause mortality.The association between glucose variability and all-cause mortality was stronger at higher mean fasting blood glucose levels compared to lower levels.The non-parametric regression methods comprehensively explored dose-response relationships between continuous exposure and outcome,revealing the combined effects of continuous exposures,which provided recommendations for targeted interventions.The method showed promising application value in medical and public health research.
9.Gastrodin alleviates microglia-mediated inflammatory responses in neonatal mice with hypoxic-ischemic brain damage by regulating CCR5/AKT signaling
Jinsha SHI ; Haonan ZHANG ; Xinglin ZHANG ; Haolong SHI ; Hanjun ZUO ; Tao GUO ; Zhao WANG ; Hang YU ; Juanjuan LI
Journal of Southern Medical University 2024;44(10):1850-1857
Objective To investigate the mechanism behind the protective effects of gastrodin against microglia-mediated inflammatory responses following hypoxic-ischemic brain damage(HIBD)in neonatal mice.Methods Thirty-six 10-day-old C57BL/6J mice were randomized into sham-operated group,HIBD(induced by ligation of the left common carotid artery followed by hypoxia for 40 min)group,and HIBD with gastrodin treatment groups(n=12).In gastrodin treatment group,100 mg/kg gastrodin was injected intraperitoneally 1 h before and at 2 and 12 h after hypoxia.After the treatments,the expressions of CCR5,AKT,p-AKT,and TNF-α and the co-expression of IBA1 and CCR5 in the corpus callosum of the mice were detected with Western blotting and immunofluorescence double staining.In a BV2 microglial cell model of oxygen-glucose deprivation(OGD),the effects of pretreatment with gastrodin and Maraviroc(an CCR5 antagonist)on protein expressions of CCR5,AKT,p-AKT,TNF-α and IL-1β were evaluated using Western blotting and immunofluorescence double staining.Results The neonatal mice with HIBD showed significantly increased expressions of CCR5 and TNF-α with lowered p-AKT expression in the brain tissues,and GAS treatment obviously reversed these changes.HIBD also significantly increased the co-expression of IBA1 and CCR5 in the corpus callosum of the mice,which was obviously lowered by gastrodin treatment.In BV2 cells,OGD significantly increased the expressions of CCR5,TNF-α,and IL-1β and decreased the expression of p-AKT,and these changes were inhibited by treatment with gastrodin,Maraviroc or their combination;the inhibitory effect of the combined treatment did not differ significantly from that of gastrodin or Maraviroc alone.Conclusion Gastrodin can produce neuroprotective effects in neonatal mice with HIBD by inhibiting inflammatory cytokine production and activate AKT phosphorylation via inhibiting CCR5.
10.Gastrodin alleviates microglia-mediated inflammatory responses in neonatal mice with hypoxic-ischemic brain damage by regulating CCR5/AKT signaling
Jinsha SHI ; Haonan ZHANG ; Xinglin ZHANG ; Haolong SHI ; Hanjun ZUO ; Tao GUO ; Zhao WANG ; Hang YU ; Juanjuan LI
Journal of Southern Medical University 2024;44(10):1850-1857
Objective To investigate the mechanism behind the protective effects of gastrodin against microglia-mediated inflammatory responses following hypoxic-ischemic brain damage(HIBD)in neonatal mice.Methods Thirty-six 10-day-old C57BL/6J mice were randomized into sham-operated group,HIBD(induced by ligation of the left common carotid artery followed by hypoxia for 40 min)group,and HIBD with gastrodin treatment groups(n=12).In gastrodin treatment group,100 mg/kg gastrodin was injected intraperitoneally 1 h before and at 2 and 12 h after hypoxia.After the treatments,the expressions of CCR5,AKT,p-AKT,and TNF-α and the co-expression of IBA1 and CCR5 in the corpus callosum of the mice were detected with Western blotting and immunofluorescence double staining.In a BV2 microglial cell model of oxygen-glucose deprivation(OGD),the effects of pretreatment with gastrodin and Maraviroc(an CCR5 antagonist)on protein expressions of CCR5,AKT,p-AKT,TNF-α and IL-1β were evaluated using Western blotting and immunofluorescence double staining.Results The neonatal mice with HIBD showed significantly increased expressions of CCR5 and TNF-α with lowered p-AKT expression in the brain tissues,and GAS treatment obviously reversed these changes.HIBD also significantly increased the co-expression of IBA1 and CCR5 in the corpus callosum of the mice,which was obviously lowered by gastrodin treatment.In BV2 cells,OGD significantly increased the expressions of CCR5,TNF-α,and IL-1β and decreased the expression of p-AKT,and these changes were inhibited by treatment with gastrodin,Maraviroc or their combination;the inhibitory effect of the combined treatment did not differ significantly from that of gastrodin or Maraviroc alone.Conclusion Gastrodin can produce neuroprotective effects in neonatal mice with HIBD by inhibiting inflammatory cytokine production and activate AKT phosphorylation via inhibiting CCR5.

Result Analysis
Print
Save
E-mail