1.The mechanism of Laggerae Herba in improving chronic heart failure by inhibiting ferroptosis through the Nrf2/SLC7A11/GPX4 signaling pathway
Jinling XIAO ; Kai HUANG ; Xiaoqi WEI ; Xinyi FAN ; Wangjing CHAI ; Jing HAN ; Kuo GAO ; Xue YU ; Fanghe LI ; Shuzhen GUO
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):343-353
Objective:
To investigate the role and mechanism of the heat-clearing and detoxifying drug Laggerae Herba in regulating the nuclear factor-erythroid 2-related factor-2(Nrf2)/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway to inhibit ferroptosis and improve chronic heart failure induced by transverse aortic arch constriction in mice.
Methods:
Twenty-four male ICR mice were divided into the sham (n=6) and transverse aortic arch constriction groups (n=18) according to the random number table method. The transverse aortic arch constriction group underwent transverse aortic constriction surgery to establish models. After modeling, the transverse aortic arch constriction group was further divided into the model, captopril, and Laggerae Herba groups according to the random number table method, with six mice per group. The captopril (15 mg/kg) and Laggerae Herba groups (1.95 g/kg) received the corresponding drugs by gavage, whereas the sham operation and model groups were administered the same volume of ultrapure water by gavage once a day for four consecutive weeks. After treatment, the cardiac function indexes of mice in each group were detected using ultrasound. The heart mass and tibia length were measured to calculate the ratio of heart weight to tibia length. Hematoxylin and eosin staining were used to observe the pathological changes in myocardial tissue. Masson staining was used to observe the degree of myocardial fibrosis. Wheat germ agglutinin staining was used to observe the degree of myocardial cell hypertrophy. Prussian blue staining was used to observe the iron deposition in myocardial tissue. An enzyme-linked immunosorbent assay was used to detect the amino-terminal pro-brain natriuretic peptide (NT-proBNP) and glutathione (GSH) contents in mice serum. Colorimetry was used to detect the malondialdehyde (MDA) content in mice serum. Western blotting was used to detect the Nrf2, GPX4, SLC7A11, and ferritin heavy chain 1 (FTH1) protein expressions in mice cardiac tissue.
Results:
Compared with the sham group, in the model group, the ejection fraction (EF) and fractional shortening (FS) of mice decreased, the left ventricular end-systolic volume (LVESV) and left ventricular end-systolic diameter (LVESD) increased, the left ventricular anterior wall end-systolic thickness (LVAWs) and left ventricular posterior wall end-systolic thickness (LVPWs) decreased, the ratio of heart weight to tibia length increased, the myocardial tissue morphology changed, myocardial fibrosis increased, the cross-sectional area of myocardial cells increased, iron deposition appeared in myocardial tissue, the serum NT-proBNP and MDA levels increased, the GSH level decreased, and Nrf2, GPX4, SLC7A11, and FTH1 protein expressions in cardiac tissue decreased (P<0.05). Compared with the model group, in the captopril and Laggerae Herba groups, the EF, FS, and LVAWs increased, the LVESV and LVESD decreased, the ratio of heart weight to tibia length decreased, the myocardial cells were arranged neatly, the degree of myocardial fibrosis decreased, the cross-sectional area of myocardial cells decreased, the serum NT-proBNP level decreased, and the GSH level increased. Compared with the model group, the LVPWs increased, the iron deposition in myocardial tissue decreased, the serum MDA level decreased, and Nrf2, GPX4, SLC7A11, and FTH1 protein expressions in cardiac tissue increased (P<0.05) in the Laggerae Herba group.
Conclusion
Laggerae Herba improves the cardiac function of mice with chronic heart failure caused by transverse aortic arch constriction, reduces the pathological remodeling of the heart, and reduces fibrosis. Its mechanism may be related to Nrf2/SLC7A11/GPX4 pathway-mediated ferroptosis.
2.Simultaneous TAVI and McKeown for esophageal cancer with severe aortic regurgitation: A case report
Liang CHENG ; Lulu LIU ; Xin XIAO ; Lin LIN ; Mei YANG ; Jingxiu FAN ; Hai YU ; Longqi CHEN ; Yingqiang GUO ; Yong YUAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):277-280
A 71-year-old male presented with esophageal cancer and severe aortic valve regurgitation. Treatment strategies for such patients are controversial. Considering the risks of cardiopulmonary bypass and potential esophageal cancer metastasis, we successfully performed transcatheter aortic valve implantation and minimally invasive three-incision thoracolaparoscopy combined with radical resection of esophageal cancer (McKeown) simultaneously in the elderly patient who did not require neoadjuvant treatment. This dual minimally invasive procedure took 6 hours and the patient recovered smoothly without any surgical complications.
3.Nucleic Acid-driven Protein Degradation: Frontiers of Lysosomal Targeted Degradation Technology
Han YIN ; Yu LI ; Yu-Chuan FAN ; Shuai GUO ; Yuan-Yu HUANG ; Yong LI ; Yu-Hua WENG
Progress in Biochemistry and Biophysics 2025;52(1):5-19
Distinct from the complementary inhibition mechanism through binding to the target with three-dimensional conformation of small molecule inhibitors, targeted protein degradation technology takes tremendous advantage of endogenous protein degradation pathway inside cells to degrade plenty of “undruggable” target proteins, which provides a novel route for the treatment of many serious diseases, mainly including proteolysis-targeting chimeras, lysosome-targeting chimeras, autophagy-targeting chimeras, antibody-based proteolysis-targeting chimeras, etc. Unlike proteolysis-targeting chimeras first found in 2001, which rely on ubiquitin-proteasome system to mainly degrade intracellular proteins of interest, lysosome-targeting chimeras identified in 2020, which was act as the fastly developing technology, utilize cellular lysosomal pathway through endocytosis mediated by lysosome-targeting receptor to degrade both extracellular and membrane proteins. As an emerging biomedical technology, nucleic acid-driven lysosome-targeting chimeras utilize nucleic acids as certain components of chimera molecule to replace with ligand to lysosome-targeting receptor or protein of interest, exhibiting broad application prospects and potential clinical value in disease treatment and drug development. This review mainly introduced present progress of nucleic acid-driven lysosome-targeting chimeras technology, including its basic composition, its advantages compared with antibody or glycopeptide-based lysosome-targeting chimeras, and focused on its chief application, in terms of the type of lysosome-targeting receptors. Most research about the development of nucleic acid-driven lysosome-targeting chimeras focused on those which utilized cation-independent mannose-6-phosphonate receptor as the lysosome-targeting receptor. Both mannose-6-phosphonate-modified glycopeptide and nucleic aptamer targeting cation-independent mannose-6-phosphonate receptor, even double-stranded DNA molecule moiety can be taken advantage as the ligand to lysosome-targeting receptor. The same as classical lysosome-targeting chimeras, asialoglycoprotein receptor can also be used for advance of nucleic acid-driven lysosome-targeting chimeras. Another new-found lysosome-targeting receptor, scavenger receptor, can bind dendritic DNA molecules to mediate cellular internalization of complex and lysosomal degradation of target protein, suggesting the successful application of scavenger receptor-mediated nucleic acid-driven lysosome-targeting chimeras. In addition, this review briefly overviewed the history of lysosome-targeting chimeras, including first-generation and second-generation lysosome-targeting chimeras through cation-independent mannose-6-phosphonate receptor-mediated and asialoglycoprotein receptor-mediated endocytosis respectively, so that a clear timeline can be presented for the advance of chimera technique. Meantime, current deficiency and challenge of lysosome-targeting chimeras was also mentioned to give some direction for deep progress of lysosome-targeting chimeras. Finally, according to faulty lysosomal degradation efficiency, more cellular mechanism where lysosome-targeting chimeras perform degradation of protein of interest need to be deeply explored. In view of current progress and direction of nucleic acid-driven lysosome-targeting chimeras, we discussed its current challenges and development direction in the future. Stability of natural nucleic acid molecule and optimized chimera construction have a great influence on the biological function of lysosome-targeting chimeras. Discovery of novel lysosome-targeting receptors and nucleic aptamer with higher affinity to the target will greatly facilitate profound advance of chimera technique. In summary, nucleic acid-driven lysosome-targeting chimeras have many superiorities, such as lower immunogenicity, expedient synthesis of chimera molecules and so on, in contrast to classical lysosome-targeting chimeras, making it more valuable. Also, the chimera technology provides new ideas and methods for biomedical research, drug development and clinical treatment, and can be used more widely through further research and optimization.
4.Research progress on effect of ambient particulate matters on Alzheimer's disease and potential mechanisms
Lu YU ; Chihang ZHANG ; Jianshu GUO ; Dongxia FAN ; Jinzhuo ZHAO
Journal of Environmental and Occupational Medicine 2025;42(6):748-755
With the accelerating aging of world population, the prevalence and disease burden of dementia such as Alzheimer's disease is increasing annually. As one of the major risk factors for dementia, air pollution is still an urgent global concern. Studies on the association between ambient particulate matter (PM), one of the major air pollutants, and dementia, such as Alzheimer's disease, are gaining attention. This paper reviewed the current evidence of relevant epidemiological and toxicological studies to illustrate the possible mechanisms underlying the effects of PM exposure on Alzheimer's disease through inflammatory responses, oxidative stress, endocrine disruption, excitatory neurotoxicity, glial cell activation, and intestinal flora disruption, which may provide clues for mitigating the health risks of air pollution and preventing Alzheimer's disease.
5.Prediction of Protein Thermodynamic Stability Based on Artificial Intelligence
Lin-Jie TAO ; Fan-Ding XU ; Yu GUO ; Jian-Gang LONG ; Zhuo-Yang LU
Progress in Biochemistry and Biophysics 2025;52(8):1972-1985
In recent years, the application of artificial intelligence (AI) in the field of biology has witnessed remarkable advancements. Among these, the most notable achievements have emerged in the domain of protein structure prediction and design, with AlphaFold and related innovations earning the 2024 Nobel Prize in Chemistry. These breakthroughs have transformed our ability to understand protein folding and molecular interactions, marking a pivotal milestone in computational biology. Looking ahead, it is foreseeable that the accurate prediction of various physicochemical properties of proteins—beyond static structure—will become the next critical frontier in this rapidly evolving field. One of the most important protein properties is thermodynamic stability, which refers to a protein’s ability to maintain its native conformation under physiological or stress conditions. Accurate prediction of protein stability, especially upon single-point mutations, plays a vital role in numerous scientific and industrial domains. These include understanding the molecular basis of disease, rational drug design, development of therapeutic proteins, design of more robust industrial enzymes, and engineering of biosensors. Consequently, the ability to reliably forecast the stability changes caused by mutations has broad and transformative implications across biomedical and biotechnological applications. Historically, protein stability was assessed via experimental methods such as differential scanning calorimetry (DSC) and circular dichroism (CD), which, while precise, are time-consuming and resource-intensive. This prompted the development of computational approaches, including empirical energy functions and physics-based simulations. However, these traditional models often fall short in capturing the complex, high-dimensional nature of protein conformational landscapes and mutational effects. Recent advances in machine learning (ML) have significantly improved predictive performance in this area. Early ML models used handcrafted features derived from sequence and structure, whereas modern deep learning models leverage massive datasets and learn representations directly from data. Deep neural networks (DNNs), graph neural networks (GNNs), and attention-based architectures such as transformers have shown particular promise. GNNs, in particular, excel at modeling spatial and topological relationships in molecular structures, making them well-suited for protein modeling tasks. Furthermore, attention mechanisms enable models to dynamically weigh the contribution of specific residues or regions, capturing long-range interactions and allosteric effects. Nevertheless, several key challenges remain. These include the imbalance and scarcity of high-quality experimental datasets, particularly for rare or functionally significant mutations, which can lead to biased or overfitted models. Additionally, the inherently dynamic nature of proteins—their conformational flexibility and context-dependent behavior—is difficult to encode in static structural representations. Current models often rely on a single structure or average conformation, which may overlook important aspects of stability modulation. Efforts are ongoing to incorporate multi-conformational ensembles, molecular dynamics simulations, and physics-informed learning frameworks into predictive models. This paper presents a comprehensive review of the evolution of protein thermodynamic stability prediction techniques, with emphasis on the recent progress enabled by machine learning. It highlights representative datasets, modeling strategies, evaluation benchmarks, and the integration of structural and biochemical features. The aim is to provide researchers with a structured and up-to-date reference, guiding the development of more robust, generalizable, and interpretable models for predicting protein stability changes upon mutation. As the field moves forward, the synergy between data-driven AI methods and domain-specific biological knowledge will be key to unlocking deeper understanding and broader applications of protein engineering.
6.Analysis of Alleviating Effect of Calcium Cyanamide on Replanting Problems of Rehmannia glutinosa
Lianghua LIN ; Hengrui ZHANG ; Haoxiang YU ; Fan YANG ; Yufei WANG ; Caixia XIE ; Tao GUO ; Zhongyi ZHANG ; Liuji ZHANG ; Bao ZHANG ; Suiqing CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):212-222
ObjectiveTo investigate the alleviating effect of calcium cyanamide (CaCN2) soil fumigation on replanting problems of Rehmannia glutinosa. MethodsNewly soil (NP) was used as the control group, while three treatment groups were established: replanted soil (RP), newly soil treated with CaCN2 (120 g·m², tillage depth 25 cm) (NPCC), and replanted soil treated with CaCN2 (RPCC). R. glutinosa was cultivated in all groups. At harvest, the tuber agronomic traits (number of enlarged roots, maximum root diameter, fresh weight, dry weight) were measured. The content of catalpol and rehmannioside D was quantified by ultra-high-performance liquid chromatography (UPLC) to evaluate medicinal quality. Rhizosphere soil available nutrients and enzyme activities were analyzed by assay kits. The community structure and composition of fungi and bacteria in rhizosphere soil were assessed via internal transcribed spacer 2 (ITS2) sequencing and 16S rDNA sequencing, respectively. ResultsCompared with NP, the RP group showed obviously reduced in tuber agronomic traits and quality indicators (P0.05). However, the RPCC group showed significant improvement in agronomic traits and a notable increase in rehmannioside D content compared to RP (P0.05). The contents of available phosphorus and potassium in RPCC and NP groups were obviously lower than those in RP (P0.05). The polyphenol oxidase soil (S-PPO) activity in RP was obviously lower than in NP (P0.05), while sucrose soil (S-SC), acid phosphatase soil (S-ACP), and S-PPO activities in RPCC were obviously higher than in RP (P0.05). Microbial richness and diversity in RP were obviously higher than in NP (P0.05), whereas no significant differences were observed between the RPCC and NP. The relative abundances of fungal genera Nectria, Myrothecium, Tomentella, and bacterial genus Skermanella were obviousl lower in RPCC and NP than in RP (P0.05). Correlation analysis that S-ACP activity was positively correlated with the content of rehmannioside D (P0.05). Fungal genera Engyodontium and Alternaria, and bacterial genera Pir4 lineage, Pirellula, Methyloversatilis, Brevundimonas, Ralstonia, and Acidibacter were obviously positively correlated with tuber dry weight (P0.05). Conversely, fungal genera Pseudaleuria, Nectria, Haematonectria, Ceratobasidium, and bacterial genera Streptomyces, Skermanella, RB41, Gemmatimonas, and Bacillus were obviously negatively correlated with dry weight (P0.05). The fungal genus Alternaria and bacterial genera Brevundimonas, Ralstonia, Acidibacter, and Dongia showed positive correlations with medicinal quality of R.glutinosa tuber, while fungal genera Pseudaleuria, Nectria, Stachybotrys, Fusarium, Gibberella, Ceratobasidium, and bacterial genera Sphingomonas, Skermanella, RB41, Gemmatimonas, and Bacillus were obviously negatively correlated (P0.05). ConclusionCaCN2 soil fumigation can significantly improve enzyme activities in replanted Rehmannia rhizosphere soil, enhance the utilization of available nutrients, reshape microbial community structure of replanted R.glutinosa at the family and genus level, and notably improve tuber agronomic traits and medicinal quality. This study provides a novel approach to alleviating replanting problems and offers insights for the integrated development of standardized cultivation techniques, including soil disinfection, nutrient-targeted regulation, and microbial inoculant application.
7.Establishment and evaluation of an animal model of heart failure with preserved ejection fraction integrating disease and syndrome based on the "deficiency-blood stasis-toxin" pathogenesis
Xiaoqi WEI ; Xinyi FAN ; Feng JIANG ; Wangjing CHAI ; Jinling XIAO ; Fanghe LI ; Kuo GAO ; Xue YU ; Wei WANG ; Shuzhen GUO
Journal of Beijing University of Traditional Chinese Medicine 2025;48(4):501-515
Objective:
This study aimed to construct an animal model of heart failure with preserved ejection fraction (HFpEF) that integrates disease and syndrome based on the "deficiency-blood stasis-toxin" pathogenesis and to evaluate it comprehensively.
Methods:
The HFpEF mouse model was constructed using a combination of Nω-nitro-L-arginine methyl ester (L-NAME) and a high-fat diet. According to the random number table method, SPF-grade male C57BL/6J mice were randomly assigned to the control, L-NAME, high-fat diet, and model groups, 10 in each group. Comprehensive observations and data collection on macroscopic signs (e.g., fur condition, mental state, stool and urine, oral and nasal condition, paw and body condition, etc.) and cardiac function were performed after 10 and 16 weeks of model induction. Additionally, the syndrome evolution was elucidated based on diagnostic criteria for clinical syndromes of heart failure. Furthermore, pathological and molecular biological examinations of myocardial tissue were performed to assess the stability and reliability of the model.
Results:
Mice in the model group showed typical characteristics of syndrome of qi deficiency and blood stasis, as well as syndrome of internal heat accumulation, including lethargy, slow response, dull paw color and oral/nasal color, exercise intolerance, abnormal platelet activation, dry feces, and dark yellow urine. The time window for these syndromes was between 10 and 16 weeks post-modeling. Cardiac function assessments revealed severe diastolic dysfunction, concentric myocardial hypertrophy, and myocardial fibrosis in the model group. Pathological examinations showed a significantly increased collagen deposition in the myocardial interstitium, enlarged cross-sectional area of cardiomyocytes, and sparse coronary microvasculature in the model group. Molecular biological analyses indicated marked activation of the inducible nitric oxide synthase/nuclear factor kappa-light-chain-enhancer of activated B cells/NOD-like receptor family pyrin domain containing 3 inflammatory pathway and significantly elevated inflammation levels in the myocardial tissue of the model group. Although mice in the L-NAME and high-fat diet groups also showed certain manifestations of qi deficiency syndrome, the substantial cardiac damage was relatively limited compared to the control group.
Conclusion
This study has constructed an animal model of HFpEF that integrates disease and syndrome based on the "deficiency-blood stasis-toxin" pathogenesis. The macroscopic and microscopic characteristics of this model are consistent with the manifestations of syndrome of qi deficiency and blood stasis, toxin syndrome, and syndrome of internal heat accumulation. Moreover, it can stably simulate the HFpEF state and reflect phenotypic changes in human disease. This model provides a suitable experimental platform to explore the pathogenesis of HFpEF, evaluate the effectiveness of traditional Chinese medicine (TCM) treatment regimens, and promote in-depth research on TCM syndromes of heart failure.
8.Reasons and strategies of reoperation after oblique lateral interbody fusion
Zhong-You ZENG ; Deng-Wei HE ; Wen-Fei NI ; Ping-Quan CHEN ; Wei YU ; Yong-Xing SONG ; Hong-Fei WU ; Shi-Yang FAN ; Guo-Hao SONG ; Hai-Feng WANG ; Fei PEI
China Journal of Orthopaedics and Traumatology 2024;37(8):756-764
Objective To summarize the reasons and management strategies of reoperation after oblique lateral interbody fusion(OLIF),and put forward preventive measures.Methods From October 2015 to December 2019,23 patients who under-went reoperation after OLIF in four spine surgery centers were retrospectively analyzed.There were 9 males and 14 females with an average age of(61.89±8.80)years old ranging from 44 to 81 years old.The index diagnosis was degenerative lumbar intervertebral dics diseases in 3 cases,discogenie low back pain in 1 case,degenerative lumbar spondylolisthesis in 6 cases,lumbar spinal stenosis in 9 cases and degenerative lumbar spinal kyphoscoliosis in 4 cases.Sixteen patients were primarily treated with Stand-alone OLIF procedures and 7 cases were primarily treated with OLIF combined with posterior pedicle screw fixation.There were 17 cases of single fusion segment,2 of 2 fusion segments,4 of 3 fusion segments.All the cases underwent reoperation within 3 months after the initial surgery.The strategies of reoperation included supplementary posterior pedicle screw instrumentation in 16 cases;posterior laminectomy,cage adjustment and neurolysis in 2 cases,arthroplasty and neuroly-sis under endoscope in 1 case,posterior laminectomy and neurolysis in 1 case,pedicle screw adjustment in 1 case,exploration and decompression under percutaneous endoscopic in 1 case,interbody fusion cage and pedicle screw revision in 1 case.Visu-al analogue scale(VAS)and Oswestry disability index(ODI)index were used to evaluate and compare the recovery of low back pain and lumbar function before reoperation and at the last follow-up.During the follow-up process,the phenomenon of fusion cage settlement or re-displacement,as well as the condition of intervertebral fusion,were observed.The changes in in-tervertebral space height before the first operation,after the first operation,before the second operation,3 to 5 days after the second operation,6 months after the second operation,and at the latest follow-up were measured and compared.Results There was no skin necrosis and infection.All patients were followed up from 12 to 48 months with an average of(28.1±7.3)months.Nerve root injury symptoms were relieved within 3 to 6 months.No cage transverse shifting and no dislodgement,loosening or breakage of the instrumentation was observed in any patient during the follow-up period.Though the intervertebral disc height was obviously increased at the first postoperative,there was a rapid loss in the early stage,and still partially lost after reopera-tion.The VAS for back pain recovered from(6.20±1.69)points preoperatively to(1.60±0.71)points postoperatively(P<0.05).The ODI recovered from(40.60±7.01)%preoperatively to(9.14±2.66)%postoperatively(P<0.05).Conclusion There is a risk of reoperation due to failure after OLIF surgery.The reasons for reoperation include preoperative bone loss or osteoporosis the initial surgery was performed by Stand-alone,intraoperative endplate injury,significant subsidence of the fusion cage after surgery,postoperative fusion cage displacement,nerve damage,etc.As long as it is discovered in a timely manner and handled properly,further surgery after OLIF surgery can achieve better clinical results,but prevention still needs to be strengthened.
9.Influence of infection frequency and vaccination on virus mutation of SARS-CoV-2
Guo XU ; Huan FAN ; Jianguang FU ; Huiyan YU ; Fei DENG ; Zhuhan DONG ; Shihan ZHANG ; Fengcai ZHU ; Changjun BAO ; Liguo ZHU
Chinese Journal of Experimental and Clinical Virology 2024;38(5):481-488
Objective:To analyze the effects of SARS-CoV-2 infection and vaccination on virus mutation.Methods:The whole genome sequencing sequences of 2 659 local SARS-CoV-2 specimens from Jiangsu Province in 2023 were selected for analysis, and relevant information such as demographic and clinical characteristics were collected, and the effects of infection and vaccination on the genome-wide mutation rate and S gene′s selective pressure of the virus were analyzed by univariate and multivariate linear regression models.Results:The average age of these infected patients was 55.0 (31.0, 74.0) years, 1 150 cases (43.2%) in the age group of ≥60 years, 1 367 cases (51.4%) were males, 2 044 cases (76.9%) had a history of COVID-19 vaccination, and 1 629 cases (61.3%) had the first-time infection. The clinical symptoms of the infected patients were mainly mild, with a total of 2434 cases (91.5%), and 29 cases (1.1%) with severe symptoms or more. The average substitution rate of SARS-CoV-2 was 9.69 (9.38, 9.98)×10 -4 subs/site/year, and the dN/dS value of the S gene was 6.08 (5.56, 8.66), which was significantly greater than that of 1 ( P<0.001), indicating positive selection. The result of univariate and multivariate linear regression model analysis showed that the SARS-CoV-2 substitution rate was higher in those with vaccination history and reinfection, aged 20-30 years, ≥60 years, and the SARS-CoV-2 substitution rate was lower in males with moderate clinical symptoms and severe disease and above. Those with a history of vaccination and reinfection, aged 50-60 years old, ≥60 years old have smaller S gene dN/dS. Conclusions:Under the immune pressure exerted by vaccination and infection, the genome-wide mutation of SARS-COV-2 accelerated, but the non-synonymous mutation rate of the S gene decreased. The mechanism causing these phenomena needs further study.
10.Safety and efficacy of domestically produced novel bioabsorbable vascular scaff old in the treatment of complex coronary artery lesions for 3 years
Deng-Shuang ZHOU ; Qiong YOU ; Hai-Liang MO ; Zi-Jun WU ; Yu-Biao LIN ; Lu-Jun CHEN ; Jun-Yu FAN ; Yong-Jian LIN ; Rui-Sheng ZHANG ; Pei-Shan WAN ; Wei-Guo ZHOU ; Keng WU
Chinese Journal of Interventional Cardiology 2024;32(9):509-515
Objective To investigate the safety and efficacy of novel bioabsorbable vascular scaffold(BVS)in the treatment of patients with complex coronary artery disease.Methods This was a retrospective,matched,single-center observational study.45 patients with coronary atherosclerotic cardiopathy received BVS treatment in the cardiovascular medicine department Department of the Affiliated Hospital of Guangdong Medical University from June 2020 to June 2021(BVS),and 45 patients treated with drug-eluting stents(DES)group were selected according to matching study requirements during the same period.Baseline,surgical,and follow-up data were compared between the two groups to evaluate safety and efficacy.The main measures of safety were:surgical time,intraoperative adverse events,etc.,and the end point of efficacy was target lesion failure(TLF),including cardiac death,target vessel myocardial infarction,and ischa-driven target lesion revascularization.Results A total of 90 patients were enrolled in this study,all of whom were followed up for at least 3 years.There were 20 cases of bifurcation lesions and 25 cases of diffuse long lesions in the two groups,and 50 cases of imaging were reviewed among the 90 patients.The proportion of stable coronary heart disease,history of diabetes,history of hypertension,history of smoking,pre-dilated balloon pressure and postoperative diastolic blood pressure in BVS group was higher than that in DES group,and the proportion of family history was lower than that in DES group(all P<0.05).There were no statistically significant differences in the rates of cardiac death,target vessel myocardial infarction,and ischemia-driven revascularization of target lesions between the two groups(all P>0.05).Binary Logistic regression model analysis showed that the diameter stenosis ratio of target lesions was an independent risk factor for intrastent restenosis(OR 2.786,95%CI 1.096-7.081,P=0.031).Conclusions Compared with traditional DES,BVS implantation has consistent safety and efficacy in the treatment of complex coronary artery disease within 3 years.The diameter stenosis ratio of target lesions was an independent risk factor for intrastent restenosis.


Result Analysis
Print
Save
E-mail