1.Analysis of factors influencing patient satisfaction in the outpatient pharmacy of maternity and child specialist hospitals in Chongqing
Ye DING ; Mengdi YU ; Yingwu SHI ; Yanqiu CHEN ; Jun YANG
China Pharmacy 2025;36(1):106-112
OBJECTIVE To analyze the factors influencing patient satisfaction in the outpatient pharmacy of tertiary maternity and child specialist hospitals in Chongqing, and provide a reference for improving the pharmaceutical management capability of tertiary maternity and child specialist hospitals and enhancing patients’ medical experience. METHODS Utilizing KANO model, a questionnaire was developed and data were analyzed. Key influencing factors were identified through the categorization of requirement attributes, Better values, Worse values, and two-dimensional matrix analysis. The impact of these categorized demand factors on overall satisfaction was further validated through Structural Equation Modeling (SEM). RESULTS Cronbach’s α coefficient for the survey questionnaire was 0.855, exceeding the acceptable threshold of 0.7; Bartlett test for sphericality yielded a value of 5 538.56 with P<0.01, indicating good reliability and validity of the survey results. Through the KANO model’s factor selection process, the top four key factors influencing patient satisfaction in outpatient pharmacies were determined to be: medication pick-up time (r=0.45), pharmacist service attitude (r=0.45), rational medication consultation (r=0.41), self-service calling system (r=0.40), all of which were subsequently validated through SEM. CONCLUSIONS The four factors of medication pick-up time, self-service calling system, pharmacist service attitude, and rational medication consultation significantly influence patient satisfaction in the outpatient pharmacies of tertiary maternity and child hospitals in Chongqing.
2.Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma
Wenwen YU ; Yubo SHI ; Xiaoqiong BAO ; Xiangxiang CHEN ; Yangyang NI ; Jincong WANG ; Hua YE
The Korean Journal of Physiology and Pharmacology 2025;29(3):337-347
Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.
3.Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma
Wenwen YU ; Yubo SHI ; Xiaoqiong BAO ; Xiangxiang CHEN ; Yangyang NI ; Jincong WANG ; Hua YE
The Korean Journal of Physiology and Pharmacology 2025;29(3):337-347
Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.
4.Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma
Wenwen YU ; Yubo SHI ; Xiaoqiong BAO ; Xiangxiang CHEN ; Yangyang NI ; Jincong WANG ; Hua YE
The Korean Journal of Physiology and Pharmacology 2025;29(3):337-347
Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.
5.Influence of network latency and bandwidth on robot-assisted laparoscopic telesurgery: A pre-clinical experiment.
Ye WANG ; Qing AI ; Taoping SHI ; Yu GAO ; Bin JIANG ; Wuyi ZHAO ; Chengjun JIANG ; Guojun LIU ; Lifeng ZHANG ; Huaikang LI ; Fan GAO ; Xin MA ; Hongzhao LI ; Xu ZHANG
Chinese Medical Journal 2025;138(3):325-331
BACKGROUND:
Telesurgery has the potential to overcome spatial limitations for surgeons, which depends on surgical robot and the quality of network communication. However, the influence of network latency and bandwidth on telesurgery is not well understood.
METHODS:
A telesurgery system capable of dynamically adjusting image compression ratios in response to bandwidth changes was established between Beijing and Sanya (Hainan province), covering a distance of 3000 km. In total, 108 animal operations, including 12 surgical procedures, were performed. Total latency ranging from 170 ms to 320 ms and bandwidth from 15-20 Mbps to less than 1 Mbps were explored using designed surgical tasks and hemostasis models for renal vein and internal iliac artery rupture bleeding. Network latency, jitter, frame loss, and bit rate code were systemically measured during these operations. National Aeronautics and Space Administration Task Load Index (NASA-TLX) and a self-designed scale measured the workload and subjective perception of surgeons.
RESULTS:
All 108 animal telesurgeries, conducted from January 2023 to June 2023, were performed effectively over a total duration of 3866 min. The operations were completed with latency up to 320 ms and bandwidths as low as 1-5 Mbps. Hemostasis for vein and artery rupture bleeding models was effectively achieved under these low bandwidth conditions. The NASA-TLX results indicated that latency significantly impacted surgical performance more than bandwidth and image clarity reductions.
CONCLUSIONS
This telesurgery system demonstrated safety and reliability. A total of 320 ms latency is acceptable for telesurgery operations. Reducing image clarity can effectively mitigate the potential latency increase caused by decreased bandwidth, offering a new method to reduce the impact of latency on telesurgery.
Animals
;
Robotic Surgical Procedures/methods*
;
Laparoscopy/methods*
6.Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma
Wenwen YU ; Yubo SHI ; Xiaoqiong BAO ; Xiangxiang CHEN ; Yangyang NI ; Jincong WANG ; Hua YE
The Korean Journal of Physiology and Pharmacology 2025;29(3):337-347
Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.
7.Hyaluronan-mediated motility receptor-mediated aerobic glycolysis enhances stem-like properties and chemoresistance in lung adenocarcinoma
Wenwen YU ; Yubo SHI ; Xiaoqiong BAO ; Xiangxiang CHEN ; Yangyang NI ; Jincong WANG ; Hua YE
The Korean Journal of Physiology and Pharmacology 2025;29(3):337-347
Lung adenocarcinoma (LUAD) is a global malignancy with significant chemoresistance impacting patient prognosis. The pro-tumorigenic role of hyaluronan-mediated motility receptor (HMMR) in LUAD is recognized. This study was designed to investigate the underlying mechanisms by which HMMR affects chemoresistance in LUAD. Bioinformatics presented the expression patterns of HMMR in LUAD patients and the association between HMMR levels and patient survival, followed by qRT-PCR to verify HMMR expression in LUAD tissues and cells. Further, bioinformatics was leveraged to identify the signaling pathways enriched by HMMR and its relevance to glycolytic genes, we also analyzed changes in the glycolytic activity of LUAD cells by manipulating HMMR expression. Stemness was evaluated through cell aggregation assays and Western blot, and drug responsiveness was gauged using CCK-8 assays, alongside flow cytometry for apoptosis analysis. HMMR was highly expressed in LUAD tissues and cells, and this overexpression correlated with poorer prognoses in patients. GSEA showed that HMMR was notably enriched in the glycolysis and gluconeogenesis pathways, correlating positively with the expression of key glycolytic genes. Cellular experiments confirmed that HMMR knockdown notably suppressed aerobic glycolysis in LUAD cells. Moreover, overexpression of HMMR could further enhance the stemness and cisplatin resistance of LUAD cells by stimulating glycolysis. In brief, this study has validated that high levels of HMMR in LUAD are predictive of poor patient prognosis, and that overexpression of HMMR can catalyze aerobic glycolysis, thus promoting stemness and chemoresistance in LUAD cells. Thus, HMMR could be a target for improving chemosensitivity in LUAD.
8.Plasma miRNA testing in the differential diagnosis of very early-stage hepatocellular carcinoma: a multicenter real-world study
Jie HU ; Ying XU ; Ao HUANG ; Lei YU ; Zheng WANG ; Xiaoying WANG ; Xinrong YANG ; Zhenbin DING ; Qinghai YE ; Yinghong SHI ; Shuangjian QIU ; Huichuan SUN ; Qiang GAO ; Jia FAN ; Jian ZHOU
Chinese Journal of Clinical Medicine 2025;32(3):350-354
Objective To explore the application of plasma 7 microRNA (miR7) testing in the differential diagnosis of very early-stage hepatocellular carcinoma (HCC). Methods This study is a multicenter real-world study. Patients with single hepatic lesion (maximum diameter≤2 cm) who underwent plasma miR7 testing at Zhongshan Hospital, Fudan University, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Anhui Provincial Hospital, and Peking University People’s Hospital between January 2019 and December 2024 were retrospectively enrolled. Patients were divided into very early-stage HCC group and non-HCC group, and the clinical pathological characteristics of the two groups were compared. The value of plasma miR7 levels, alpha-fetoprotein (AFP), and des-gamma-carboxy prothrombin (DCP) in the differential diagnosis of very early-stage HCC was evaluated using receiver operating characteristic (ROC) curves and area under the curve (AUC). In patients with both negative AFP and DCP (AFP<20 ng/mL, DCP<40 mAU/mL), the diagnostic value of plasma miR7 for very early-stage HCC was analyzed. Results A total of 64 528 patients from 4 hospitals underwent miR7 testing, and 1 682 were finally included, of which 1 073 were diagnosed with very early-stage HCC and 609 were diagnosed with non-HCC. The positive rate of miR7 in HCC patients was significantly higher than that in non-HCC patients (67.9% vs 24.3%, P<0.001). ROC curves showed that the AUCs for miR7, AFP, and DCP in distinguishing HCC patients from the non-HCC individuals were 0.718, 0.682, and 0.642, respectively. The sensitivities were 67.85%, 43.71%, and 44.45%, and the specificities were 75.70%, 92.78%, and 83.91%, respectively. The pairwise comparison of AUCs showed that the diagnostic efficacy of plasma miR7 detection was significantly better than that of AFP or DCP (P<0.05). Although its specificity was slightly lower than AFP and DCP, the sensitivity was significantly higher. Among patients negative for both AFP and DCP, miR7 maintained an AUC of 0.728 for diagnosing very early-stage HCC, with 67.82% sensitivity and 77.73% specificity. Conclusions Plasma miR7 testing is a potential molecular marker with high sensitivity and specificity for the differential diagnosis of small hepatic nodules. In patients with very early-stage HCC lacking effective molecular markers (negative for both AFP and DCP), miR7 can serve as a novel and effective molecular marker to assist diagnosis.
9.Tissue-resident peripheral helper T cells foster hepatocellular carcinoma immune evasion by promoting regulatory B-cell expansion.
Haoyuan YU ; Mengchen SHI ; Xuejiao LI ; Zhixing LIANG ; Kun LI ; Yongwei HU ; Siqi LI ; Mingshen ZHANG ; Yang YANG ; Yang LI ; Linsen YE
Chinese Medical Journal 2025;138(17):2148-2158
BACKGROUND:
Peripheral helper T (T PH ) cells are uniquely positioned within pathologically inflamed non-lymphoid tissues to stimulate B-cell responses and antibody production. However, the phenotype, function, and clinical relevance of T PH cells in hepatocellular carcinoma (HCC) are currently unknown.
METHODS:
Blood, tumor, and peritumoral liver tissue samples from 39 HCC patients (Sep 2016-Aug 2017) and 101 HCC patients (Sep 2011-Dec 2012) at the Third Affiliated Hospital of Sun Yat-sen University were used. Flow cytometry was used to quantify the expression, phenotype, and function of T PH cells. Log-rank tests were performed to evaluate disease-free survival and overall survival in samples from 39 patients and 101 patients with HCC. T PH cells, CD19 + B cells, and T follicular helper (T FH ) cells were cultured separately in vitro or isolated from C57/B6L mice in vivo for functional assays.
RESULTS:
T PH cells highly infiltrated tumor tissues, which was correlated with tumor size, early recurrence, and shorter survival time. The tumor-infiltrated T PH cells showed a unique ICOS hi CXCL13 + IL-21 - MAF + BCL-6 - phenotype and triggered naïve B-cell differentiation into regulatory B cells. Triggering programmed cell death protein 1 (PD-1) induced the production of C-X-C motif chemokine ligand 13 (CXCL13) by T PH cells, which then suppressed tumor-specific immunity and promoted disease progression.
CONCLUSION
Our study reveals a novel regulatory mechanism of T PH cell-regulatory B-cell-mediated immunosuppression and provides an important perspective for determining the balance between the differentiation of protumorigenic T PH cells and that of antitumorigenic T FH cells in the HCC microenvironment.
Carcinoma, Hepatocellular/metabolism*
;
Liver Neoplasms/metabolism*
;
Humans
;
T-Lymphocytes, Helper-Inducer/metabolism*
;
Animals
;
Mice
;
Male
;
Female
;
Mice, Inbred C57BL
;
Middle Aged
;
B-Lymphocytes, Regulatory/metabolism*
;
Flow Cytometry
;
Interleukin-21
;
Aged
;
Chemokine CXCL13/metabolism*
10.Prescription pattern of traditional Chinese medicine for treatment of hypertensive left ventricular hypertrophy based on multivariate data mining.
Xuan-Yang WANG ; Yuan GAO ; Bin LI ; Rui YU ; Shi-Yang XIE ; Lu-Ye ZHOU ; Yu-Die SUN ; Ming-Jun ZHU
China Journal of Chinese Materia Medica 2025;50(6):1688-1698
This study explored the prescription pattern of traditional Chinese medicine(TCM) in the treatment of hypertensive left ventricular hypertrophy(LVH), so as to provide a relevant theoretical basis for the clinical diagnosis and treatment of hypertensive LVH. The study systematically searched the databases of CNKI, Wanfang, VIP, and SinoMed to screen out the qualified literature on TCM treatment of hypertensive LVH and used Microsoft Excel 2021 to establish the relevant prescription database. It also counted the frequency, property, flavor, and meridian affiliation of TCM in the prescriptions and classified their efficacy. The study used Lantern 5.0 and Rstudio software to analyze the hidden structural models and association rules of the high-frequency TCM with a frequency of >3.50% and adopted Origin 2024 software to visualize the data, so as to explore the prescription pattern of TCM in treating hypertensive LVH. The results showed that a total of 128 TCM prescriptions were included, involving 163 TCM with a total frequency of 1 242. The high-frequency TCM included Salviae Miltiorrhizae Radix et Rhizoma, Uncariae Ramulus Cum Uncis, Gastrodiae Rhizoma, Poria, and Chuanxiong Rhizoma, with the main efficacy from blood-activating and stasis-resolving herbs, tonic herbs, and liver-calming and wind-extinguishing herbs. The latent structure analysis(LSA) identified 10 latent variables, 20 latent classes, 7 comprehensive clustering models, and 23 core prescriptions. It was speculated that the common syndromes of hypertensive LVH included blood stasis obstructing the collaterals, ascending hyperactivity of liver Yang, Yin deficiency with Yang hyperactivity, and intermingled phlegm and blood stasis. The association rule analysis yielded 33 strong association rules, with the highest comprehensive association rule being Gastrodiae Rhizoma→Uncariae Ramulus Cum Uncis. Hypertensive LVH is characterized by asthenia in origin and asthenia in superficiality, with Yin deficiency and Qi deficiency as the origin and blood stasis and phlegm as the superficiality. Clinical treatment focuses on activating blood circulation, resolving stasis, tonifying Qi, and nourishing Yin, combined with syndrome-specific therapies such as calming wind and stopping convulsions, clearing heat, eliminating dampness and resolving phlegm, and promoting diuresis and reducing swelling.
Drugs, Chinese Herbal/therapeutic use*
;
Data Mining
;
Humans
;
Hypertension/complications*
;
Hypertrophy, Left Ventricular/physiopathology*
;
Medicine, Chinese Traditional
;
Drug Prescriptions

Result Analysis
Print
Save
E-mail