1.Characterization and Application of Moisture Absorption Kinetics of Traditional Chinese Medicines Based on Double Exponential Model:A Review
Yanting YU ; Lei XIONG ; Yan HE ; Wei LIU ; Jing YANG ; Yao ZHANG ; Jiali CHEN ; Xiaojian LUO ; Xiaoyong RAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):340-346
Hygroscopicity research has long been a key focus and hot topic in Chinese materia medica(CMM). Elucidating hygroscopic mechanisms plays a vital role in formulation design, process optimization, and storage condition selection. Hygroscopic models serve as essential tools for characterizing CMM hygroscopic mechanisms, with various types available. The double exponential model is a kinetic mathematical model constructed based on the law of conservation of energy and Fick's first law of diffusion, tailored to the physical properties of CMM extracts. In recent years, this model has been extensively applied to simulate the dynamic moisture absorption behavior of CMM extracts and solid dosage forms under varying humidity conditions. It has revealed the correlation between moisture absorption kinetic parameters and material properties, offering a new perspective for characterizing the moisture uptake behavior of CMM. This paper systematically reviews the application progress of this model in the field of CMM, analyzes its advantages, disadvantages, and challenges in this domain, and explores its potential application trends in other fields. It aims to provide references for elucidating the moisture absorption mechanisms of CMM and researching moisture-proofing technologies, while also offering insights for its broader application in food and polymer materials.
2.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
3.Research progress of nano drug delivery system based on metal-polyphenol network for the diagnosis and treatment of inflammatory diseases
Meng-jie ZHAO ; Xia-li ZHU ; Yi-jing LI ; Zi-ang WANG ; Yun-long ZHAO ; Gao-jian WEI ; Yu CHEN ; Sheng-nan HUANG
Acta Pharmaceutica Sinica 2025;60(2):323-336
Inflammatory diseases (IDs) are a general term of diseases characterized by chronic inflammation as the primary pathogenetic mechanism, which seriously affect the quality of patient′s life and cause significant social and medical burden. Current drugs for IDs include nonsteroidal anti-inflammatory drugs, corticosteroids, immunomodulators, biologics, and antioxidants, but these drugs may cause gastrointestinal side effects, induce or worsen infections, and cause non-response or intolerance. Given the outstanding performance of metal polyphenol network (MPN) in the fields of drug delivery, biomedical imaging, and catalytic therapy, its application in the diagnosis and treatment of IDs has attracted much attention and significant progress has been made. In this paper, we first provide an overview of the types of IDs and their generating mechanisms, then sort out and summarize the different forms of MPN in recent years, and finally discuss in detail the characteristics of MPN and their latest research progress in the diagnosis and treatment of IDs. This research may provide useful references for scientific research and clinical practice in the related fields.
4.Antiviral therapy for chronic hepatitis B with mildly elevated aminotransferase: A rollover study from the TORCH-B trial
Yao-Chun HSU ; Chi-Yi CHEN ; Cheng-Hao TSENG ; Chieh-Chang CHEN ; Teng-Yu LEE ; Ming-Jong BAIR ; Jyh-Jou CHEN ; Yen-Tsung HUANG ; I-Wei CHANG ; Chi-Yang CHANG ; Chun-Ying WU ; Ming-Shiang WU ; Lein-Ray MO ; Jaw-Town LIN
Clinical and Molecular Hepatology 2025;31(1):213-226
Background/Aims:
Treatment indications for patients with chronic hepatitis B (CHB) remain contentious, particularly for patients with mild alanine aminotransferase (ALT) elevation. We aimed to evaluate treatment effects in this patient population.
Methods:
This rollover study extended a placebo-controlled trial that enrolled non-cirrhotic patients with CHB and ALT levels below two times the upper limit of normal. Following 3 years of randomized intervention with either tenofovir disoproxil fumarate (TDF) or placebo, participants were rolled over to open-label TDF for 3 years. Liver biopsies were performed before and after the treatment to evaluate histopathological changes. Virological, biochemical, and serological outcomes were also assessed (NCT02463019).
Results:
Of 146 enrolled patients (median age 47 years, 80.8% male), 123 completed the study with paired biopsies. Overall, the Ishak fibrosis score decreased in 74 (60.2%), remained unchanged in 32 (26.0%), and increased in 17 (13.8%) patients (p<0.0001). The Knodell necroinflammation score decreased in 58 (47.2%), remained unchanged in 29 (23.6%), and increased in 36 (29.3%) patients (p=0.0038). The proportion of patients with an Ishak score ≥ 3 significantly decreased from 26.8% (n=33) to 9.8% (n=12) (p=0.0002). Histological improvements were more pronounced in patients switching from placebo. Virological and biochemical outcomes also improved in placebo switchers and remained stable in patients who continued TDF. However, serum HBsAg levels did not change and no patient cleared HBsAg.
Conclusions
In CHB patients with minimally raised ALT, favorable histopathological, biochemical, and virological outcomes were observed following 3-year TDF treatment, for both treatment-naïve patients and those already on therapy.
5.Antiviral therapy for chronic hepatitis B with mildly elevated aminotransferase: A rollover study from the TORCH-B trial
Yao-Chun HSU ; Chi-Yi CHEN ; Cheng-Hao TSENG ; Chieh-Chang CHEN ; Teng-Yu LEE ; Ming-Jong BAIR ; Jyh-Jou CHEN ; Yen-Tsung HUANG ; I-Wei CHANG ; Chi-Yang CHANG ; Chun-Ying WU ; Ming-Shiang WU ; Lein-Ray MO ; Jaw-Town LIN
Clinical and Molecular Hepatology 2025;31(1):213-226
Background/Aims:
Treatment indications for patients with chronic hepatitis B (CHB) remain contentious, particularly for patients with mild alanine aminotransferase (ALT) elevation. We aimed to evaluate treatment effects in this patient population.
Methods:
This rollover study extended a placebo-controlled trial that enrolled non-cirrhotic patients with CHB and ALT levels below two times the upper limit of normal. Following 3 years of randomized intervention with either tenofovir disoproxil fumarate (TDF) or placebo, participants were rolled over to open-label TDF for 3 years. Liver biopsies were performed before and after the treatment to evaluate histopathological changes. Virological, biochemical, and serological outcomes were also assessed (NCT02463019).
Results:
Of 146 enrolled patients (median age 47 years, 80.8% male), 123 completed the study with paired biopsies. Overall, the Ishak fibrosis score decreased in 74 (60.2%), remained unchanged in 32 (26.0%), and increased in 17 (13.8%) patients (p<0.0001). The Knodell necroinflammation score decreased in 58 (47.2%), remained unchanged in 29 (23.6%), and increased in 36 (29.3%) patients (p=0.0038). The proportion of patients with an Ishak score ≥ 3 significantly decreased from 26.8% (n=33) to 9.8% (n=12) (p=0.0002). Histological improvements were more pronounced in patients switching from placebo. Virological and biochemical outcomes also improved in placebo switchers and remained stable in patients who continued TDF. However, serum HBsAg levels did not change and no patient cleared HBsAg.
Conclusions
In CHB patients with minimally raised ALT, favorable histopathological, biochemical, and virological outcomes were observed following 3-year TDF treatment, for both treatment-naïve patients and those already on therapy.
6.Antiviral therapy for chronic hepatitis B with mildly elevated aminotransferase: A rollover study from the TORCH-B trial
Yao-Chun HSU ; Chi-Yi CHEN ; Cheng-Hao TSENG ; Chieh-Chang CHEN ; Teng-Yu LEE ; Ming-Jong BAIR ; Jyh-Jou CHEN ; Yen-Tsung HUANG ; I-Wei CHANG ; Chi-Yang CHANG ; Chun-Ying WU ; Ming-Shiang WU ; Lein-Ray MO ; Jaw-Town LIN
Clinical and Molecular Hepatology 2025;31(1):213-226
Background/Aims:
Treatment indications for patients with chronic hepatitis B (CHB) remain contentious, particularly for patients with mild alanine aminotransferase (ALT) elevation. We aimed to evaluate treatment effects in this patient population.
Methods:
This rollover study extended a placebo-controlled trial that enrolled non-cirrhotic patients with CHB and ALT levels below two times the upper limit of normal. Following 3 years of randomized intervention with either tenofovir disoproxil fumarate (TDF) or placebo, participants were rolled over to open-label TDF for 3 years. Liver biopsies were performed before and after the treatment to evaluate histopathological changes. Virological, biochemical, and serological outcomes were also assessed (NCT02463019).
Results:
Of 146 enrolled patients (median age 47 years, 80.8% male), 123 completed the study with paired biopsies. Overall, the Ishak fibrosis score decreased in 74 (60.2%), remained unchanged in 32 (26.0%), and increased in 17 (13.8%) patients (p<0.0001). The Knodell necroinflammation score decreased in 58 (47.2%), remained unchanged in 29 (23.6%), and increased in 36 (29.3%) patients (p=0.0038). The proportion of patients with an Ishak score ≥ 3 significantly decreased from 26.8% (n=33) to 9.8% (n=12) (p=0.0002). Histological improvements were more pronounced in patients switching from placebo. Virological and biochemical outcomes also improved in placebo switchers and remained stable in patients who continued TDF. However, serum HBsAg levels did not change and no patient cleared HBsAg.
Conclusions
In CHB patients with minimally raised ALT, favorable histopathological, biochemical, and virological outcomes were observed following 3-year TDF treatment, for both treatment-naïve patients and those already on therapy.
7.Analysis of T7 RNA Polymerase: From Structure-function Relationship to dsRNA Challenge and Biotechnological Applications
Wei-Chen NING ; Yu HUA ; Hui-Ling YOU ; Qiu-Shi LI ; Yao WU ; Yun-Long LIU ; Zhen-Xin HU
Progress in Biochemistry and Biophysics 2025;52(9):2280-2294
T7 RNA polymerase (T7 RNAP) is one of the simplest known RNA polymerases. Its unique structural features make it a critical model for studying the mechanisms of RNA synthesis. This review systematically examines the static crystal structure of T7 RNAP, beginning with an in-depth examination of its characteristic “thumb”, “palm”, and “finger” domains, which form the classic “right-hand-like” architecture. By detailing these structural elements, this review establishes a foundation for understanding the overall organization of T7 RNAP. This review systematically maps the functional roles of secondary structural elements and their subdomains in transcriptional catalysis, progressively elucidating the fundamental relationships between structure and function. Further, the intrinsic flexibility of T7 RNAP and its applications in research are also discussed. Additionally, the review presents the structural diagrams of the enzyme at different stages of the transcription process, and through these diagrams, it provides a detailed description of the complete transcription process of T7 RNAP. By integrating structural dynamics and kinetics analyses, the review constructs a comprehensive framework that bridges static structure to dynamic processes. Despite its advantages, T7 RNAP has a notable limitation: it generates double-stranded RNA (dsRNA) as a byproduct. The presence of dsRNA not only compromises the purity of mRNA products but also elicits nonspecific immune responses, which pose significant challenges for biotechnological and therapeutic applications. The review provides a detailed exploration of the mechanisms underlying dsRNA formation during T7 RNAP catalysis, reviews current strategies to mitigate this issue, and highlights recent progress in the field. A key focus is the semi-rational design of T7 RNAP mutants engineered to minimize dsRNA generation and enhance catalytic performance. Beyond its role in transcription, T7 RNAP exhibits rapid development and extensive application in fields, including gene editing, biosensing, and mRNA vaccines. This review systematically examines the structure-function relationships of T7 RNAP, elucidates the mechanisms of dsRNA formation, and discusses engineering strategies to optimize its performance. It further explores the engineering optimization and functional expansion of T7 RNAP. Furthermore, this review also addresses the pressing issues that currently need resolution, discusses the major challenges in the practical application of T7 RNAP, and provides an outlook on potential future research directions. In summary, this review provides a comprehensive analysis of T7 RNAP, ranging from its structural architecture to cutting-edge applications. We systematically examine: (1) the characteristic right-hand domains (thumb, palm, fingers) that define its minimalistic structure; (2) the structure-function relationships underlying transcriptional catalysis; and (3) the dynamic transitions during the complete transcription cycle. While highlighting T7 RNAP’s versatility in gene editing, biosensing, and mRNA vaccine production, we critically address its major limitation—dsRNA byproduct formation—and evaluate engineering solutions including semi-rationally designed mutants. By synthesizing current knowledge and identifying key challenges, this work aims to provide novel insights for the development and application of T7 RNAP and to foster further thought and progress in related fields.
8.Acupuncture for Wernicke encephalopathy: a case report.
Xiangyu CHEN ; Yuhan MAO ; Jiayong YAO ; Xueping YU ; Wei ZOU
Chinese Acupuncture & Moxibustion 2025;45(2):262-264
This case report introduces Professor ZOU Wei 's experience of treating a patient with Wernicke encephalopathy using the "regulating spirit and promoting yang acupuncture method". The patient was diagnosed as spleen and stomach deficiency with internal liver wind. The treatment principle focused on regulating spirit and awakening the brain, strengthening the spleen, calming wind, and relaxing the tendons. Three groups of acupoints were selected: ①acupoints for awakening the brain by regulating spirit and unblocking meridians (Baihui [GV20], Qianshencong [EX-HN1] and bilateral Taiyang [EX-HN5], Fengchi [GB20]), etc.; ②acupoints for harmonizing the spleen, stomach, qi, and blood (bilateral Tianshu [ST25], Daheng [SP15], Taixi [KI3], etc.); ③acupoints for relaxing and softening the tendons (bilateral Waiguan [TE5], Hegu [LI4], Yanglingquan [GB34], Xuanzhong [GB39]).The needles were retained for 50 min per session, once daily, 7 days a week. After 16-week treatment, the patient was able to walk a few steps slowly with assistance, and other symptoms returned to normal. A two-month follow-up showed the patient's condition remained stable, walking distance further increased, and overall health significantly improved.
Humans
;
Acupuncture Points
;
Acupuncture Therapy
;
Wernicke Encephalopathy/physiopathology*
9.Intermittent fasting ameliorates rheumatoid arthritis by harassing deregulated synovial fibroblasts.
Lei LI ; Jin DONG ; Yumu ZHANG ; Chen ZHAO ; Wen WEI ; Xueqin GAO ; Yao YU ; Meilin LU ; Qiyuan SUN ; Yuwei CHEN ; Xuehua JIAO ; Jie LU ; Na YUAN ; Yixuan FANG ; Jianrong WANG
Chinese Medical Journal 2025;138(23):3201-3203
10.P4HA1 mediates YAP hydroxylation and accelerates collagen synthesis in temozolomide-resistant glioblastoma.
Xueru LI ; Gangfeng YU ; Xiao ZHONG ; Jiacheng ZHONG ; Xiangyu CHEN ; Qinglong CHEN ; Jinjiang XUE ; Xi YANG ; Xinchun ZHANG ; Yao LING ; Yun XIU ; Yaqi DENG ; Hongda LI ; Wei MO ; Yong ZHU ; Ting ZHANG ; Liangjun QIAO ; Song CHEN ; Fanghui LU
Chinese Medical Journal 2025;138(16):1991-2005
BACKGROUND:
Temozolomide (TMZ) resistance is a significant challenge in treating glioblastoma (GBM). Collagen remodeling has been shown to be a critical factor for therapy resistance in other cancers. This study aimed to investigate the mechanism of TMZ chemoresistance by GBM cells reprogramming collagens.
METHODS:
Key extracellular matrix components, including collagens, were examined in paired primary and recurrent GBM samples as well as in TMZ-treated spontaneous and grafted GBM murine models. Human GBM cell lines (U251, TS667) and mouse primary GBM cells were used for in vitro studies. RNA-sequencing analysis, chromatin immunoprecipitation, immunoprecipitation-mass spectrometry, and co-immunoprecipitation assays were conducted to explore the mechanisms involved in collagen accumulation. A series of in vitro and in vivo experiments were designed to assess the role of the collagen regulators prolyl 4-hydroxylase subunit alpha 1 (P4HA1) and yes-associated protein (YAP) in sensitizing GBM cells to TMZ.
RESULTS:
This study revealed that TMZ exposure significantly elevated collagen type I (COL I) expression in both GBM patients and murine models. Collagen accumulation sustained GBM cell survival under TMZ-induced stress, contributing to enhanced TMZ resistance. Mechanistically, P4HA1 directly binded to and hydroxylated YAP, preventing ubiquitination-mediated YAP degradation. Stabilized YAP robustly drove collagen type I alpha 1 ( COL1A1) transcription, leading to increased collagen deposition. Disruption of the P4HA1-YAP axis effectively reduced COL I deposition, sensitized GBM cells to TMZ, and significantly improved mouse survival.
CONCLUSION
P4HA1 maintained YAP-mediated COL1A1 transcription, leading to collagen accumulation and promoting chemoresistance in GBM.
Temozolomide
;
Humans
;
Glioblastoma/drug therapy*
;
Animals
;
Mice
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm/genetics*
;
YAP-Signaling Proteins
;
Hydroxylation
;
Dacarbazine/pharmacology*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Transcription Factors/metabolism*
;
Collagen/biosynthesis*
;
Collagen Type I/metabolism*
;
Prolyl Hydroxylases/metabolism*
;
Antineoplastic Agents, Alkylating/therapeutic use*

Result Analysis
Print
Save
E-mail