1.Role of radiotherapy in extensive-stage small cell lung cancer after durvalumab-based immunochemotherapy: A retrospective study.
Lingjuan CHEN ; Yi KONG ; Fan TONG ; Ruiguang ZHANG ; Peng DING ; Sheng ZHANG ; Ye WANG ; Rui ZHOU ; Xingxiang PU ; Bolin CHEN ; Fei LIANG ; Qiaoyun TAN ; Yu XU ; Lin WU ; Xiaorong DONG
Chinese Medical Journal 2025;138(17):2130-2138
BACKGROUND:
The purpose of this study was to evaluate the safety and efficacy of subsequent radiotherapy (RT) following first-line treatment with durvalumab plus chemotherapy in patients with extensive-stage small cell lung cancer (ES-SCLC).
METHODS:
A total of 122 patients with ES-SCLC from three hospitals during July 2019 to December 2021 were retrospectively analyzed. Inverse probability of treatment weighting (IPTW) analysis was performed to address potential confounding factors. The primary focus of our evaluation was to assess the impact of RT on progression-free survival (PFS) and overall survival (OS).
RESULTS:
After IPTW analysis, 49 patients received durvalumab plus platinum-etoposide (EP) chemotherapy followed by RT (Durva + EP + RT) and 72 patients received immunochemotherapy (Durva + EP). The median OS was 17.2 months vs . 12.3 months (hazard ratio [HR]: 0.38, 95% confidence interval [CI]: 0.17-0.85, P = 0.020), and the median PFS was 8.9 months vs . 5.9 months (HR: 0.56, 95% CI: 0.32-0.97, P = 0.030) in Durva + EP + RT and Durva + EP groups, respectively. Thoracic radiation therapy (TRT) resulted in longer OS (17.2 months vs . 14.7 months) and PFS (9.1 months vs . 7.2 months) compared to RT directed to other metastatic sites. Among patients with oligo-metastasis, RT also showed significant benefits, with a median OS of 17.4 months vs . 13.7 months and median PFS of 9.8 months vs . 5.9 months compared to no RT. Continuous durvalumab treatment beyond progression (TBP) prolonged OS compared to patients without TBP, in both the Durva + EP + RT (NA vs . 15.8 months, HR: 0.48, 95% CI: 0.14-1.63, P = 0.238) and Durva + EP groups (12.3 months vs . 4.3 months, HR: 0.29, 95% CI: 0.10-0.81, P = 0.018). Grade 3 or 4 adverse events occurred in 13 (26.5%) and 13 (18.1%) patients, respectively, in the two groups; pneumonitis was mostly low-grade.
CONCLUSION
Addition of RT after first-line immunochemotherapy significantly improved survival outcomes with manageable toxicity in ES-SCLC.
Humans
;
Small Cell Lung Carcinoma/therapy*
;
Retrospective Studies
;
Male
;
Female
;
Middle Aged
;
Lung Neoplasms/therapy*
;
Aged
;
Antibodies, Monoclonal/therapeutic use*
;
Adult
;
Immunotherapy/methods*
;
Aged, 80 and over
3.Clinical features and variant spectrum of FGFR3-related disorders.
Shi-Li GU ; Ling-Wen YING ; Guo-Ying CHANG ; Xin LI ; Juan LI ; Yu DING ; Ru-En YAO ; Ting-Ting YU ; Xiu-Min WANG
Chinese Journal of Contemporary Pediatrics 2025;27(10):1259-1265
OBJECTIVES:
To study genotype-phenotype correlations in children with FGFR3 variants and to improve clinical recognition of related disorders.
METHODS:
Clinical data of 95 patients aged 0-18 years harboring FGFR3 variants, confirmed by whole‑exome sequencing at Shanghai Children's Medical Center from January 2012 to December 2023, were retrospectively reviewed. Detailed phenotypic characterization was performed for 22 patients with achondroplasia (ACH) and 10 with hypochondroplasia (HCH).
RESULTS:
Among the 95 patients, 52 (55%) had ACH, 24 (25%) had HCH, 9 (9%) had thanatophoric dysplasia, 3 (3%) had syndromic skeletal dysplasia, 2 (2%) had severe achondroplasia with developmental delay and acanthosis nigricans, and 5 (5%) remained unclassified. A previously unreported FGFR3 variant, c.1663G>T, was identified. All 22 ACH patients presented with disproportionate short stature accompanied by limb dysplasia, commonly with macrocephaly, a depressed nasal bridge, bowed legs, and frontal bossing; complications were present in 17 (77%). The 10 HCH patients predominantly exhibited disproportionate short stature with limb dysplasia and depressed nasal bridge.
CONCLUSIONS
ACH is the most frequent phenotype associated with FGFR3 variants, and missense variants constitute the predominant variant type. The degree of FGFR3 activation appears to correlate with the clinical severity of skeletal dysplasia.
Humans
;
Receptor, Fibroblast Growth Factor, Type 3/genetics*
;
Child
;
Male
;
Child, Preschool
;
Female
;
Infant
;
Adolescent
;
Dwarfism/genetics*
;
Achondroplasia/genetics*
;
Lordosis/genetics*
;
Infant, Newborn
;
Retrospective Studies
;
Genetic Association Studies
;
Bone and Bones/abnormalities*
;
Phenotype
;
Limb Deformities, Congenital
4.The Enhancing Effects and Underlying Mechanism of Ionizing Radiation on Adipogenic Differentiation of Mesenchymal Stem Cells via Regulating Oxidative Stress Pathway.
Fu-Hao YU ; Bo-Feng YIN ; Pei-Lin LI ; Xiao-Tong LI ; Jia-Yi TIAN ; Run-Xiang XU ; Jie TANG ; Xiao-Yu ZHANG ; Wen-Jing ZHANG ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):246-254
OBJECTIVE:
To investigate the effects and underlying mechanism of ionizing radiation on the adipogenic of mesenchymal stem cells (MSCs).
METHODS:
Mouse MSCs were cultured in vitro and treated with 2 Gy and 6 Gy radiation with 60Co, and the radiation dose rate was 0.98 Gy/min. Bulk RNA-seq was performed on control and irradiated MSCs. The changes of adipogenic differentiation and oxidative stress pathways of MSC were revealed by bioinformatics analysis. Oil Red O staining was used to detect the adipogenic differentiation ability of MSCs in vitro, and real-time fluorescence quantitative PCR (qPCR) was used to detect the expression differences of key regulatory factors Cebpa, Lpl and Pparg after radiation treatment. At the same time, qPCR and Western blot were used to detect the effect of inhibition of Nrf2, a key factor of antioxidant stress pathway, on the expression of key regulatory factors of adipogenesis. Moreover, the species conservation of the irradiation response of human bone marrow MSCs and mouse MSC was determined by qPCR.
RESULTS:
Bulk RNA-seq suggested that ionizing radiation promotes adipogenic differentiation of MSCs and up-regulation of oxidative stress-related genes and pathways. The results of Oil Red O staining and qPCR showed that ionizing radiation promoted the adipogenesis of MSCs, with high expression of Cebpa, Lpl and Pparg, as well as oxidative stress-related gene Nrf2. Nrf2 pathway inhibitors could further enhance the adipogenesis of MSCs in bone marrow after radiation. Notably, the similar regulation of oxidative pathways and enhanced adipogenesis post irradiation were observed in human bone marrow MSCs. In addition, irradiation exposure led to up-regulated mRNA expression of interleukin-6 and down-regulated mRNA expression of colony stimulating factor 2 in human bone marrow MSCs.
CONCLUSION
Ionizing radiation promotes adipogenesis of MSCs in mice, and oxidative stress pathway participates in this effect, blocking Nrf2 further promotes the adipogenesis of MSCs. Additionally, irradiation activates oxidative pathways and promotes adipogenic differentiation of human bone marrow MSCs.
Mesenchymal Stem Cells/cytology*
;
Oxidative Stress/radiation effects*
;
Animals
;
Adipogenesis/radiation effects*
;
Mice
;
Radiation, Ionizing
;
Cell Differentiation/radiation effects*
;
Humans
;
NF-E2-Related Factor 2/metabolism*
;
PPAR gamma
;
Cells, Cultured
5.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*
6.Preparation and Evaluation of Clinical-Grade Human Umbilical Cord-Derived Mesenchymal Stem Cells with High Expression of Hematopoietic Supporting Factors.
Jie TANG ; Pei-Lin LI ; Xiao-Yu ZHANG ; Xiao-Tong LI ; Fu-Hao YU ; Jia-Yi TIAN ; Run-Xiang XU ; Bo-Feng YIN ; Li DING ; Heng ZHU
Journal of Experimental Hematology 2025;33(3):892-898
OBJECTIVE:
To prepare clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSC) with high expression of hematopoietic supporting factors and evaluate their stem cell characteristics.
METHODS:
Fetal umbilical cord tissues were collected from healthy postpartum women during full-term cesarean section. Wharton's jelly was mechanically separated and hUC-MSCs were obtained by explant culture method and enzyme digestion method in an animal serum-free culture system with addition of human platelet lysate. The phenotypic characteristics of hUC-MSCs obtained by two methods were detected by flow cytometry. The differences in proliferation ability between the two groups of hUC-MSCs were identified through CCK-8 assay and colony forming unit-fibroblast (CFU-F) assay. The differences in multilineage differentiation potential between the two groups of hUC-MSCs were identified through induction of adipogenic, osteogenic, and chondrogenic differentiation. The mRNA expression levels of hematopoietic supporting factors such as SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in the two groups of hUC-MSCs were identified by real-time fluorescence quantiative PCR(RT-qPCR).
RESULTS:
The results of flow cytometry showed that hUC-MSCs obtained by the two methods both expressed high levels of CD73, CD90 and CD105, while lowly expressed CD31, CD45 and HLA-DR. The results of CCK-8 and CFU-F assay showed that the proliferation ability of hUC-MSCs obtained by explant culture method was better than those obtained by enzyme digestion method. The results of the triple lineage differentiation experiment showed that there was no significant difference in multilineage differentiation potential between the two grous of hUC-MSCs. The results of RT-qPCR showed that the mRNA expression levels of hematopoietic supporting factors SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in hUC-MSCs obtained by explant cultrue method were higher than those obtained by enzyme digestion method.
CONCLUSION
Clinical-grade hUC-MSCs with high expression levels of hematopoietic supporting factors were successfully cultured in an animal serum-free culture system.
Humans
;
Mesenchymal Stem Cells/metabolism*
;
Umbilical Cord/cytology*
;
Cell Differentiation
;
Female
;
Cell Proliferation
;
Cells, Cultured
;
Chemokine CXCL12/metabolism*
;
Angiopoietin-1/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Stem Cell Factor/metabolism*
;
Flow Cytometry
;
Pregnancy
7.Causal association between erectile dysfunction and the risk of myocardial infarction: A two-sample bidirectional Mendelian randomization study.
Ye-Tong ZHANG ; Xue-Fei DING ; Yu-Xuan SHANG ; Shang WU
National Journal of Andrology 2025;31(8):684-691
OBJECTIVE:
To evaluate the association between erectile dysfunction (ED) and myocardial infarction (MI) using two sample Mendelian randomization.
METHODS:
A Mendelian randomization study was conducted using comprehensive data on ED and MI from extensive genome-wide association data. Using inverse variance weighted analysis for causal relationships, and correct for confounding factors using multivariate Mendelian randomization, the potential mediating effects were evaluated as well. Based on Genecard data, the genes related to ED and MI were identified. Molecular docking was used to reveal spontaneously bound drug molecules.
RESULTS:
Our study found that exposure to ED was a risk factor for MI (OR: 1.001 0, 95% CI: 1.000 2-1.001 8, P=0.017 7), which also held true in the validation dataset (OR: 1.028 5, 95% CI: 1.005 0-1.052 6, P=0.017 2). No statistically significant heterogeneity or horizontal pleiotropy was found. The results of reverse Mendelian randomization analysis showed any reverse causal relationship between ED and MI. In multivariate Mendelian randomization analysis, after excluding confounding factors (excluding triglycerides and high-density lipoprotein), the P-value remained less than 0.05, and the OR ranged from 1.000 1 to 1.000 7, indicating that ED was still a risk factor for MI. In the mediation analysis, it was found that the current mediation ratio of smoking to MI was 13.06%. In summary-data-based mendelian randomization analysis, it was found that the gene PTPN11 was a common target gene for MI and ED (OR=0.990, P<0.001). Subsequent molecular docking with sildenafil, clopidogrel, and dapoxetine could spontaneously bind to the PTPN11 gene receptor.
CONCLUSION
There is a causal relationship between ED and MI, with smoking as a potential mediating factor, and the gene PTPN11 being a co-target gene.
Humans
;
Male
;
Mendelian Randomization Analysis
;
Myocardial Infarction/genetics*
;
Erectile Dysfunction/complications*
;
Risk Factors
;
Genome-Wide Association Study
;
Molecular Docking Simulation
;
Polymorphism, Single Nucleotide
8.Tranexamic acid-fatty alcohol polyoxyethylene ether conjugation/PVA foam for venous sclerotherapy via vascular damage and inhibiting plasmin system.
Jizhuang MA ; Keda ZHANG ; Wenhan LI ; Yu DING ; Yongfeng CHEN ; Xiaoyu HUANG ; Tong YU ; Di SONG ; Haoran NIU ; Huichao XIE ; Tianzhi YANG ; Xiaoyun ZHAO ; Xinggang YANG ; Pingtian DING
Acta Pharmaceutica Sinica B 2025;15(6):3291-3304
Venous system diseases mainly include varicose veins and venous malformations of lower limbs and the genital system. Most of them are chronic diseases that cause serious clinical symptoms to patients and affect their health and quality of life. Sclerotherapy has become the first-line therapy for venous system diseases. However, there are problems such as incomplete fibrosis and vascular recanalization after sclerotherapy, and improper operation will cause serious adverse consequences. Therefore, exploring a safe and effective sclerotherapy strategy is essential for developing clinically successful sclerotherapy. To solve the above problems, we proposed a new sclerotherapy strategy with a dual mechanism of "vascular damage and plasmin (PLA) system inhibition." We intended to construct a novel cationic surfactant (AEOx-TA) by reacting tranexamic acid (TA), a parent structure, with fatty alcohol polyoxyethylene ether (AEOx) by ester bonds. AEOx-TA could damage vascular endothelium and initiate a coagulation cascade effect to induce thrombus. Furthermore, AEOx-TA could be degraded by esterase and release the parent drug, TA, which could inhibit the PLA system to inhibit the degradation of thrombus and extracellular matrix and promote the process of vascular fibrosis. In addition, such surfactant-based sclerosants have foam-forming properties, and they can be blended with polyvinyl alcohol (PVA) to prepare a highly stable foam formulation (AEOx-TA/P), which can achieve a precise drug delivery and prolonged drug retention time, thereby improving drug efficacy and reducing the risk of ectopic embolism. Overall, the novel cationic surfactant AEOx-TA provides a new avenue to resolve the bottleneck: surfactant sclerosants' efficiency is relatively low in the current sclerotherapy.
9.NUP62 alleviates senescence and promotes the stemness of human dental pulp stem cells via NSD2-dependent epigenetic reprogramming.
Xiping WANG ; Li WANG ; Linxi ZHOU ; Lu CHEN ; Jiayi SHI ; Jing GE ; Sha TIAN ; Zihan YANG ; Yuqiong ZHOU ; Qihao YU ; Jiacheng JIN ; Chen DING ; Yihuai PAN ; Duohong ZOU
International Journal of Oral Science 2025;17(1):34-34
Stem cells play a crucial role in maintaining tissue regenerative capacity and homeostasis. However, mechanisms associated with stem cell senescence require further investigation. In this study, we conducted a proteomic analysis of human dental pulp stem cells (HDPSCs) obtained from individuals of various ages. Our findings showed that the expression of NUP62 was decreased in aged HDPSCs. We discovered that NUP62 alleviated senescence-associated phenotypes and enhanced differentiation potential both in vitro and in vivo. Conversely, the knocking down of NUP62 expression aggravated the senescence-associated phenotypes and impaired the proliferation and migration capacity of HDPSCs. Through RNA-sequence and decoding the epigenomic landscapes remodeled induced by NUP62 overexpression, we found that NUP62 helps alleviate senescence in HDPSCs by enhancing the nuclear transport of the transcription factor E2F1. This, in turn, stimulates the transcription of the epigenetic enzyme NSD2. Finally, the overexpression of NUP62 influences the H3K36me2 and H3K36me3 modifications of anti-aging genes (HMGA1, HMGA2, and SIRT6). Our results demonstrated that NUP62 regulates the fate of HDPSCs via NSD2-dependent epigenetic reprogramming.
Humans
;
Dental Pulp/cytology*
;
Nuclear Pore Complex Proteins/genetics*
;
Cellular Senescence/genetics*
;
Stem Cells/metabolism*
;
Epigenesis, Genetic
;
Cell Proliferation
;
Cell Differentiation
;
Histone-Lysine N-Methyltransferase/metabolism*
;
Cells, Cultured
;
Cellular Reprogramming
;
Cell Movement
;
Proteomics
10.Expert consensus on the diagnosis and treatment of cemental tear.
Ye LIANG ; Hongrui LIU ; Chengjia XIE ; Yang YU ; Jinlong SHAO ; Chunxu LV ; Wenyan KANG ; Fuhua YAN ; Yaping PAN ; Faming CHEN ; Yan XU ; Zuomin WANG ; Yao SUN ; Ang LI ; Lili CHEN ; Qingxian LUAN ; Chuanjiang ZHAO ; Zhengguo CAO ; Yi LIU ; Jiang SUN ; Zhongchen SONG ; Lei ZHAO ; Li LIN ; Peihui DING ; Weilian SUN ; Jun WANG ; Jiang LIN ; Guangxun ZHU ; Qi ZHANG ; Lijun LUO ; Jiayin DENG ; Yihuai PAN ; Jin ZHAO ; Aimei SONG ; Hongmei GUO ; Jin ZHANG ; Pingping CUI ; Song GE ; Rui ZHANG ; Xiuyun REN ; Shengbin HUANG ; Xi WEI ; Lihong QIU ; Jing DENG ; Keqing PAN ; Dandan MA ; Hongyu ZHAO ; Dong CHEN ; Liangjun ZHONG ; Gang DING ; Wu CHEN ; Quanchen XU ; Xiaoyu SUN ; Lingqian DU ; Ling LI ; Yijia WANG ; Xiaoyuan LI ; Qiang CHEN ; Hui WANG ; Zheng ZHANG ; Mengmeng LIU ; Chengfei ZHANG ; Xuedong ZHOU ; Shaohua GE
International Journal of Oral Science 2025;17(1):61-61
Cemental tear is a rare and indetectable condition unless obvious clinical signs present with the involvement of surrounding periodontal and periapical tissues. Due to its clinical manifestations similar to common dental issues, such as vertical root fracture, primary endodontic diseases, and periodontal diseases, as well as the low awareness of cemental tear for clinicians, misdiagnosis often occurs. The critical principle for cemental tear treatment is to remove torn fragments, and overlooking fragments leads to futile therapy, which could deteriorate the conditions of the affected teeth. Therefore, accurate diagnosis and subsequent appropriate interventions are vital for managing cemental tear. Novel diagnostic tools, including cone-beam computed tomography (CBCT), microscopes, and enamel matrix derivatives, have improved early detection and management, enhancing tooth retention. The implementation of standardized diagnostic criteria and treatment protocols, combined with improved clinical awareness among dental professionals, serves to mitigate risks of diagnostic errors and suboptimal therapeutic interventions. This expert consensus reviewed the epidemiology, pathogenesis, potential predisposing factors, clinical manifestations, diagnosis, differential diagnosis, treatment, and prognosis of cemental tear, aiming to provide a clinical guideline and facilitate clinicians to have a better understanding of cemental tear.
Humans
;
Dental Cementum/injuries*
;
Consensus
;
Diagnosis, Differential
;
Cone-Beam Computed Tomography
;
Tooth Fractures/therapy*

Result Analysis
Print
Save
E-mail