1.Research progress on pentacyclic triterpenoids in medicinal Ilex species and their pharmacological activities.
Yu-Ling LIU ; Yi-Ran WU ; Bao-Lin WANG ; Xiao-Wei SU ; Qiu-Juan CHEN ; Yi RAO ; Shi-Lin YANG ; Li-Ni HUO ; Hong-Wei GAO
China Journal of Chinese Materia Medica 2025;50(12):3252-3266
Traditional Chinese medicine(TCM) capable of clearing heat and removing toxin is most commonly used in clinical practice and has the effect of removing fire-heat and toxin. Studies have shown that most of the Ilex plants have the effect of clearing heat and removing toxin, among which the varieties of I. cornuta, I. pubescens, I. rotunda, I. latifolia, and I. chinensis are most widely used. These plants generally contain triterpenoids and their glycosides, alkaloids, flavonoids, phenylpropanoids, and other chemical components, especially pentacyclic triterpenoids. According to their skeletons, pentacyclic triterpenoids can be divided into the oleanane type, the ursane type, the lupinane type, etc. Among them, ursane-type components are the most abundant, and 136 species have been found so far. These components have been proved to have pharmacological effects such as anti-inflammatory, anti-tumor, hypolipidemic, anti-thrombosis, cardiomyocyte-protective, antibacterial, and hepatoprotective effects. Therefore, this paper systematically reviews the domestic and foreign literature on Ilex plants with a focus on the research progress on pentacyclic triterpenoids and their pharmacological activities, aiming to provide reference for the development of TCM resources with the effect of clearing heat and removing toxin.
Ilex/chemistry*
;
Plants, Medicinal/chemistry*
;
Pentacyclic Triterpenes/pharmacology*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Animals
2.Posterior medial branch block for persistent pain after percutaneous vertebral augmentation in osteoporotic vertebral fractures.
Zhe-Ren WANG ; Ren YU ; Chun-de LU ; Zhi-Yuan XU ; Bin WU ; Cheng NI
China Journal of Orthopaedics and Traumatology 2025;38(11):1145-1150
OBJECTIVE:
To evaluate the short-and medium-term efficacy of posterior medial branch block in the treatment of persistent pain after percutaneous vertebral augmentation.
METHODS:
From January 2018 to January 2023, a total of 1, 062 patients with osteoporotic vertebral compression fractures underwent percutaneous vertebral augmentation. Among them, 32 elderly patients who experienced persistent low back pain after surgery and subsequently received posterior medial branch block and cryoablation were included. Six patients died during follow-up, leaving 26 patients for final analysis (1 male, 25 females). The mean age was (82.96±5.66) years (ranged, 76 to 94 years). The mean body mass index was (23.76±3.08) kg·m-2(ranged 18.1 to 27.2 kg·m-2). The bone mineral density T-value ranged from -2.5 to -4.3 with a mean of (-3.09±0.56). The mean volume of bone cement injected was 6.00 (5.38, 7.00) ml. Fracture locations were T11 (2 cases), T12 (7 cases), L1 (10 cases), L2 (6 cases), and L3 (1 case). The mean interval from vertebral augmentation to block treatment was (7.12±2.22) months (rangd 6 to 12 months). The vertebral augmentation procedures were percutaneous kyphoplasty(PKP) in 12 cases and percutaneous vertebroplasty (PVP) in 14 cases. At the 2nd week, 3rd month, and 6th month after the block, the numerical rating scale(NRS), Oswestry disability index(ODI), patient satisfaction, and pain relief rate at the 6th month were evaluated. Relationships between pain relief rate at the 6th month after the last treatment and possible influencing factors were analyzed.
RESULTS:
Compared with X-ray films after percutaneous vertebral augmentation, the X-ray films before block showed an increase in kyphotic angle and vertebral compression rate, with statistically significant differences(P<0.05). At the 2nd week, 3rd month, and 6th month after posterior medial branch block and cryoablation, NRS and ODI scores were significantly lower than before the block(P<0.05). Among the 26 patients, 5 received additional cryoablation. At the 6th month after the last treatment, 19 patients reported excellent or good satisfaction. Univariate binary Logistic analysis showed all P>0.05, and no independent factor affecting final satisfaction or pain relief at 6 months after the last treatment was identified.
CONCLUSION
Posterior medial branch block(with cryoablation) can effectively improve short-and medium-term symptoms and function in patients with persistent axial low back pain after percutaneous vertebral augmentation for osteoporotic vertebral fractures.
Humans
;
Male
;
Female
;
Aged
;
Spinal Fractures/surgery*
;
Aged, 80 and over
;
Osteoporotic Fractures/surgery*
;
Vertebroplasty/adverse effects*
;
Nerve Block/methods*
3.Puerarin alleviates rheumatoid arthritis in rats by modulating TAK1-mediated TLR4/NF-κB signaling pathway.
Maiyuan XU ; Ni LI ; Jiayi LI ; Tao ZHANG ; Liwen MA ; Tao LIN ; Haonan YU ; Ning WU ; Zunqiu WU ; Li HUANG
Journal of Southern Medical University 2025;45(10):2231-2239
OBJECTIVES:
To explore the therapeutic mechanism of puerarin for alleviating synovitis in rats with collagen-induced arthritis (CIA).
METHODS:
In a SD rat model of CIA, we tested the effects of daily gavage of puerarin at low, moderate and high doses (10, 30, and 100 mg/kg, respectively) for 3 weeks, with tripterygium glycosides (GTW, 10 mg/kg) as the positive control, on swelling in the hind limb joints regions evaluated by arthritis index scoring. Mass fraction of the liver of the rats was calculated, and pathologies in joint synovial membrane were observed with HE staining. The expressions of transforming growth factor β‑activated kinase-1 (TAK1), Toll-like receptor 4 (TLR4), and nuclear factor kappa-Bp65 (NF‑κB p65) at the mRNA and protein levels in the synovial tissues were detected using Real-time PCR and Western blotting.
RESULTS:
Compared with those in the model group, the rats in GTW group and high-dose puerarin group showed significantly reduced mass fraction of the liver. Treatment with GTW and puerarin at the 3 doses all significantly alleviated plantar swelling, lowered arthritis index scores, and improved synovitis in CIA rats (P<0.05), and the effects of puerarin showed an obvious dose dependence. Both GTW and puerarin treatments significantly lowered TAK1, TLR4, and NF‑κB p65 mRNA and protein expressions in the synovium of CIA rats.
CONCLUSIONS
Puerarin alleviates synovium damages in CIA rats possibly by suppressing the TLR4/NF‑κB signaling pathway via downregulating TAK1 expression.
Animals
;
Toll-Like Receptor 4/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
MAP Kinase Kinase Kinases/metabolism*
;
Signal Transduction/drug effects*
;
Arthritis, Rheumatoid/drug therapy*
;
NF-kappa B/metabolism*
;
Isoflavones/therapeutic use*
;
Male
;
Arthritis, Experimental/drug therapy*
;
Transcription Factor RelA/metabolism*
;
Synovial Membrane/metabolism*
4.Correction to: A Virtual Reality Platform for Context-Dependent Cognitive Research in Rodents.
Xue-Tong QU ; Jin-Ni WU ; Yunqing WEN ; Long CHEN ; Shi-Lei LV ; Li LIU ; Li-Jie ZHAN ; Tian-Yi LIU ; Hua HE ; Yu LIU ; Chun XU
Neuroscience Bulletin 2025;41(5):932-932
5.Stem-leaf saponins of Panax notoginseng attenuate experimental Parkinson's disease progression in mice by inhibiting microglia-mediated neuroinflammation via P2Y2R/PI3K/AKT/NFκB signaling pathway.
Hui WU ; Chenyang NI ; Yu ZHANG ; Yingying SONG ; Longchan LIU ; Fei HUANG ; Hailian SHI ; Zhengtao WANG ; Xiaojun WU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):43-53
Stem-leaf saponins from Panax notoginseng (SLSP) comprise numerous PPD-type saponins with diverse pharmacological properties; however, their role in Parkinson's disease (PD), characterized by microglia-mediated neuroinflammation, remains unclear. This study evaluated the effects of SLSP on suppressing microglia-driven neuroinflammation in experimental PD models, including the 1-methyl-4-phenylpyridinium (MPTP)-induced mouse model and lipopolysaccharide (LPS)-stimulated BV-2 microglia. Our findings revealed that SLSP mitigated behavioral impairments and excessive microglial activation in models of PD, including MPTP-treated mice. Additionally, SLSP inhibited the upregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) and attenuated the phosphorylation of PI3K, protein kinase B (AKT), nuclear factor-κB (NFκB), and inhibitor of NFκB protein α (IκBα) both in vivo and in vitro. Moreover, SLSP suppressed the production of inflammatory markers such as interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α) in LPS-stimulated BV-2 cells. Notably, the P2Y2R agonist partially reversed the inhibitory effects of SLSP in LPS-treated BV-2 cells. These results suggest that SLSP inhibit microglia-mediated neuroinflammation in experimental PD models, likely through the P2Y2R/PI3K/AKT/NFκB signaling pathway. These novel findings indicate that SLSP may offer therapeutic potential for PD by attenuating microglia-mediated neuroinflammation.
Animals
;
Panax notoginseng/chemistry*
;
Saponins/pharmacology*
;
Microglia/immunology*
;
Mice
;
NF-kappa B/immunology*
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/immunology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Male
;
Parkinson Disease/immunology*
;
Mice, Inbred C57BL
;
Disease Models, Animal
;
Plant Leaves/chemistry*
;
Neuroinflammatory Diseases/drug therapy*
;
Humans
6.Protective Effect of Buxue Shengsui Recipe on Cancer Related Anemia and Immunohypofunction Based on the Zebrafish Model
Shuo ZHANG ; Xiaoyan JIANG ; Yingjun FU ; Honghui NI ; Shuiying YANG ; Yu WU ; Min PENG
World Science and Technology-Modernization of Traditional Chinese Medicine 2024;26(5):1320-1327
Objective To explore the effects of Buxue Shengsui Recipe on anemia and immune injury in zebrafish and its mechanism.Methods Tg(gata1a:DsRed)zebrafish was used as experimental subjects to establish phenylhydrazine-induced zebrafish anemia model.To observe the effect of different concentrations of Buxue Shengsui Recipe on the average strength of zebrafish dorsal blood vessels.Besides,Tg(lysc:DsRed)zebrafish was used as experimental subjects to establish immune injury model of zebrafish induced by chloramphenicol and vinorelbine.To observe the effect of Buxue Shengsui Recipe on the number of neutrophils in zebrafish tail.The expression of interleukin 6(IL-6),interleukin 10(IL-10)and tumor necrosis factor α(TNF-α)mRNA was detected by Real time-PCR.Results Compared with the model group,0.5 mg·mL-1 and 2 mg·mL-1 Buxue Shengsui Recipe significantly increased the average strength of zebrafish dorsal blood vessels(P<0.01)in a dose-dependent manner.2 mg·mL-1 Buxue Shengsui Recipe significantly reversed the decrease of neutrophils caused by chloramphenicol and vinorelbine(P<0.01).Compared with the model group,the expression of IL-6 and IL-10 mRNA of zebrafish in Buxue Shengsui formula group was significantly increased(P<0.05 or P<0.01),and TNF-α mRNA expression was significantly decreased(P<0.05).Conclusion Buxue Shengsui Recipe can improve the anemia state of zebrafish induced by phenylhydrazine,and has obvious protective effect on the immune injury of zebrafish induced by chloramphenicol and vinorelbine,which is related to the up-regulation of cytokines IL-6,IL-10 and the down-regulation of TNF-α.
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.

Result Analysis
Print
Save
E-mail