1.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
2.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
3.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
4.Effect of mild hypercapnia during the recovery period on the emergence time from total intravenous anesthesia: a randomized controlled trial
Lan LIU ; Xiangde CHEN ; Qingjuan CHEN ; Xiuyi LU ; Lili FANG ; Jinxuan REN ; Yue MING ; Dawei SUN ; Pei CHEN ; Weidong WU ; Lina YU
Korean Journal of Anesthesiology 2025;78(3):215-223
Background:
Intraoperative hypercapnia reduces the time to emergence from volatile anesthetics, but few clinical studies have explored the effect of hypercapnia on the emergence time from intravenous (IV) anesthesia. We investigated the effect of inducing mild hypercapnia during the recovery period on the emergence time after total IV anesthesia (TIVA).
Methods:
Adult patients undergoing transurethral lithotripsy under TIVA were randomly allocated to normocapnia group (end-tidal carbon dioxide [ETCO2] 35–40 mmHg) or mild hypercapnia group (ETCO2 50-55 mmHg) during the recovery period. The primary outcome was the extubation time. The spontaneous breathing-onset time, voluntary eye-opening time, and hemodynamic data were collected. Changes in the cerebral blood flow velocity in the middle cerebral artery were assessed using transcranial Doppler ultrasound.
Results:
In total, 164 patients completed the study. The extubation time was significantly shorter in the mild hypercapnia (13.9 ± 5.9 min, P = 0.024) than in the normocapnia group (16.3 ± 7.6 min). A similar reduction was observed in spontaneous breathing-onset time (P = 0.021) and voluntary eye-opening time (P = 0.008). Multiple linear regression analysis revealed that the adjusted ETCO2 level was a negative predictor of extubation time. Middle cerebral artery blood flow velocity was significantly increased after ETCO2 adjustment for mild hypercapnia, which rapidly returned to baseline, without any adverse reactions, within 20 min after extubation.
Conclusions
Mild hypercapnia during the recovery period significantly reduces the extubation time after TIVA. Increased ETCO2 levels can potentially enhance rapid recovery from IV anesthesia.
5.Effects of phillyrin on lung injury in rats with influenza virus pneumonia by regulating the SphK1/S1P/S1PR1 signal pathway
Hai-Yan LIU ; Ming-Yue FU ; Hai-Zhen SUN ; Yu-Ying ZENG
The Chinese Journal of Clinical Pharmacology 2024;40(3):378-382
Objective To explore the effect of phillyrin(KD-1)on lung injury in rats with influenza virus pneumonia and its regulatory mechanism on the sphingosine kinases 1(SphK1)/sphingosine 1-phosphate(S1P)/S1P receptors 1(S1PR1)signal pathway.Methods Wistar male rats were divided into control group(gavage with equal amount of 0.9%NaCl),model group(gavage with equal amount of 0.9%NaCl),positive drug group(gavage with 0.02 g·kg-1 ribaverin),PF-543 group(gavage with 10 mg·kg-1 SphK1 inhibitor PF-543 Citrate)and experimental-L,-H groups(gavage with 6.5,13 mg·kg-1 KD-1,respectively).Except the control group,the other rats were treated with influenza virus nasal drip to establish influenza virus infection pneumonia model.The lung index of rats was measured;Hematoxylin-eosin(HE)staining was applied to observe the pathological damage of lung tissue in rats;the contents of interleukin 1β(IL-1β),tumor necrosis factor α(TNF-α)and IL-6 in bronchoalveolar lavage fluid(BALF)were detected by enzyme linked immunosorbent assay(ELISA);Western blot was applied to detect the expression levels of SphK1,S1P and S1PR1 proteins in rat lung tissue.Results The lung indices of experimental-L,-H groups,PF-543 group,positive drug group,model group and control group were(7.62±0.51),(5.34±0.46),(6.53±0.52),(5.48±0.43),(12.46±0.87)and(4.41±0.32)mg·g-1;IL-1β content were(47.26±2.05),(25.18±1.58),(35.75±1.50),(27.31±1.67),(62.37±2.51)and(13.28±1.04)ng·L-1;the contents of TNF-α were(76.58±4.73),(51.82±3.90),(64.81±4.15),(53.06±3.86),(98.47±4.92)and(42.71±3.52)ng·L-1;IL-6 content were(57.62±4.29),(39.06±3.86),(48.75±3.83),(41.23±3.61),(76.92±5.24)and(28.56±3.17)ng·L-1;SphK1 protein expression were 1.07±0.08,0.51±0.04,0.65±0.05,0.53±0.04,1.28±0.09 and 0.36±0.03;S1P protein expression were 1.21±0.10,0.57±0.05,0.73±0.06,0.58±0.05,1.39±0.11 and 0.39±0.03;S1PR1 protein expression were 0.45±0.03,0.83±0.07,0.64±0.05,0.81±0.07,0.28±0.02 and 1.03±0.07,respectively.Compared with the control group,the above indexes in the model group had statistical significance(all P<0.05);compared with the model group,the above indexes in experimental-L,-H groups,PF-543 group and positive drug group had statistical significance(all P<0.05).Conclusion KD-1 may alleviate lung injury in rats with influenza virus pneumonia by inhibiting the SphK1/S1 P/S1 PR1 signal pathway.
6.Clinical trial of Morinda officinalis oligosaccharides in the continuation treatment of adults with mild and moderate depression
Shu-Zhe ZHOU ; Zu-Cheng HAN ; Xiu-Zhen WANG ; Yan-Qing CHEN ; Ya-Ling HU ; Xue-Qin YU ; Bin-Hong WANG ; Guo-Zhen FAN ; Hong SANG ; Ying HAI ; Zhi-Jie JIA ; Zhan-Min WANG ; Yan WEI ; Jian-Guo ZHU ; Xue-Qin SONG ; Zhi-Dong LIU ; Li KUANG ; Hong-Ming WANG ; Feng TIAN ; Yu-Xin LI ; Ling ZHANG ; Hai LIN ; Bin WU ; Chao-Ying WANG ; Chang LIU ; Jia-Fan SUN ; Shao-Xiao YAN ; Jun LIU ; Shou-Fu XIE ; Mao-Sheng FANG ; Wei-Feng MI ; Hong-Yan ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(6):815-819
Objective To observe the efficacy and safety of Morinda officinalis oligosaccharides in the continuation treatment of mild and moderate depression.Methods An open,single-arm,multi-center design was adopted in our study.Adult patients with mild and moderate depression who had received acute treatment of Morinda officinalis oligosaccharides were enrolled and continue to receive Morinda officinalis oligosaccharides capsules for 24 weeks,the dose remained unchanged during continuation treatment.The remission rate,recurrence rate,recurrence time,and the change from baseline to endpoint of Hamilton Depression Scale(HAMD),Hamilton Anxiety Scale(HAMA),Clinical Global Impression-Severity(CGI-S)and Arizona Sexual Experience Scale(ASEX)were evaluated.The incidence of treatment-related adverse events was reported.Results The scores of HAMD-17 at baseline and after treatment were 6.60±1.87 and 5.85±4.18,scores of HAMA were 6.36±3.02 and 4.93±3.09,scores of CGI-S were 1.49±0.56 and 1.29±0.81,scores of ASEX were 15.92±4.72 and 15.57±5.26,with significant difference(P<0.05).After continuation treatment,the remission rate was 54.59%(202 cases/370 cases),and the recurrence rate was 6.49%(24 cases/370 cases),the recurrence time was(64.67±42.47)days.The incidence of treatment-related adverse events was 15.35%(64 cases/417 cases).Conclusion Morinda officinalis oligosaccharides capsules can be effectively used for the continuation treatment of mild and moderate depression,and are well tolerated and safe.
7.Inhibitory effect of miR-133a on liver cancer through tar-geted regulation of G6PD expression
Ya-Dong WANG ; Xue-Jun SUN ; Chun-Yu YANG ; Gui-Ping WANG ; Ming JIN ; He LI ; Jia-Jun YIN
Chinese Journal of Current Advances in General Surgery 2024;27(1):25-29
Objective:To explore if miR-133a is involved in the occurrence and development of hepatocellular carcinoma(HCC)via regulating G6PD.Methods:Bioinformatics analysis predicted the binding sites of miR-133a and G6PD;RT-PCR or western blot was used to assess the expres-sion of miR-133a and G6PD in HCC tissues and the adjacent normal tissues;CCK-8 and flow cy-tometry assays were performed to evaluate the effects of miR-133a/G6PD on cell proliferation,apop-tosis;Fluorescent reporter gene and western blot assays were used to assess the effect of miR-133a on G6PD expression.Results:miR-133a expression was decreased in HCC tissues while G6PD was increased(P0.01);Up-regulation of miR-133a significantly reduced G6PD expression(P<0.01);up-reg-ulation of miR-133a inhibited cell growth and promoted cell apoptosis(P<0.05),whereas these effects induced by miR-133a over-expression were all abolished when G6PD was up-regulated(P<0.01).Conclusion:miR-133a represses the occurrence and development of HCC via targeting G6PD.
8.Development and Application of Detection Methods for Capture and Transcription Elongation Rate of Bacterial Nascent RNA
Yuan-Yuan LI ; Yu-Ting WANG ; Zi-Chun WU ; Hao-Xuan LI ; Ming-Yue FEI ; Dong-Chang SUN ; O. Claudio GUALERZI ; Attilio FABBRETTI ; Anna Maria GIULIODORI ; Hong-Xia MA ; Cheng-Guang HE
Progress in Biochemistry and Biophysics 2024;51(9):2249-2260
ObjectiveDetection and quantification of RNA synthesis in cells is a widely used technique for monitoring cell viability, health, and metabolic rate.After exposure to environmental stimuli, both the internal reference gene and target gene would be degraded. As a result, it is imperative to consider the accurate capture of nascent RNA and the detection of transcriptional levels of RNA following environmental stimulation. This study aims to create a Click Chemistry method that utilizes its property to capture nascent RNA from total RNA that was stimulated by the environment. MethodsThe new RNA was labeled with 5-ethyluridine (5-EU) instead of uracil, and the azido-biotin medium ligand was connected to the magnetic sphere using a combination of “Click Chemistry” and magnetic bead screening. Then the new RNA was captured and the transcription rate of 16S rRNA was detected by fluorescence molecular beacon (M.B.) and quantitative reverse transcription PCR (qRT-PCR). ResultsThe bacterial nascent RNA captured by “Click Chemistry” screening can be used as a reverse transcription template to form cDNA. Combined with the fluorescent molecular beacon M.B.1, the synthesis rate of rRNA at 37℃ is 1.2 times higher than that at 15℃. The 16S rRNA gene and cspI gene can be detected by fluorescent quantitative PCR,it was found that the measured relative gene expression changes were significantly enhanced at 25℃ and 16℃ when analyzed with nascent RNA rather than total RNA, enabling accurate detection of RNA transcription rates. ConclusionCompared to other article reported experimental methods that utilize screening magnetic columns, the technical scheme employed in this study is more suitable for bacteria, and the operation steps are simple and easy to implement, making it an effective RNA capture method for researchers.
9.Ameliorative effect of Panax notoginseng saponins eye drops on non-proliferative diabetic retinopathy in rats
Xin SUN ; Ya-ru WANG ; Xue-mei CHENG ; Hong-yu CHEN ; Ming CHEN ; Shu-sheng LAI ; Li-li JI ; Xiao-hui WEI ; Chang-hong WANG
Acta Pharmaceutica Sinica 2024;59(5):1271-1279
Diabetic retinopathy (DR) is a diabetic ocular complication that can lead to poor vision and blindness. This experiment aimed to investigate the ameliorative effect and its mechanism of
10.Toxicity and Mechanism of Di-(2-ethylhexyl) Phthalate on Testis
An-Ni FENG ; Ren-Ren SUN ; Yu-Bo XIAO ; Zhao-Ming ZENG ; Zhong-Cheng MO ; Yuan-Jie XIE
Progress in Biochemistry and Biophysics 2024;51(3):555-563
Di-(2-ethylhexyl) phthalate (DEHP) is currently one of the most widely used plasticizers, widely found in all kinds of items, such as children’s toys and food packaging materials, but also added to wallpaper, cable protective agents and other building decoration materials. DEHP is toxic and absorbed by the human body through respiratory tract, digestive tract and skin contact, which can cause damage to multiple systems, especially the male reproductive system, and testis is an important target organ. Oxidative stress injury is the core mechanism of spermatogenesis disorder caused by DEHP. DEHP exposure can cause oxidative stress or reactive oxygen species (ROS) increase in germ cells, and on this basis, promote cell apoptosis or cause excessive autophagy. The toxicity of DEHP to Leydig cells is mainly to interfere with the synthesis of steroid hormones. For Sertoli cells, ferroptosis and destruction of the blood-testis barrier are common injury mechanisms. In addition, gene methylation caused by DEHP not only affects the spermatogenic process, but also has epigenetic effects on offspring. In this paper, we reviewed the pathological damage, germ cell toxicity and epigenetic effects of DEHP on testis, and focused on the damage and molecular mechanism on testicular spermatogenic cells, Leydig cells and Sertoli cells. Future research is required to elucidate the body’s clearance mechanism and treatment plan after exposure to DEHP and whether DEHP will damage the function of myoid cells. It is hoped that this can provide new ideas for prevention and treatment of male reproductive disorders resulting from long-term exposure to plastic products.

Result Analysis
Print
Save
E-mail