1.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
2.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
3.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
4.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
5.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
6.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
7.Analyzing the influencing factors of work-related musculoskeletal disorders in passenger drivers
Xinyang YU ; Yingfei XIANG ; Yonglin LUO ; Meifang XU ; Xiao YIN ; Min YANG ; Huiqing CHEN ; Shijie HU
China Occupational Medicine 2025;52(2):155-159
Objective To investigate the prevalence of work-related musculoskeletal disorders (WMSDs) in passenger drivers and its influencing factors. Methods A total of 951 passenger drivers in Guangdong Province were selected as the research subjects using the judgmental sampling method. A Musculoskeletal Injury Questionnaire was employed to assess the prevalence of WMSDs in the past year. Results The prevalence of WMSDs in passenger drivers was 41.11%. The result of multivariable logistic regression analysis showed that married drivers had a higher risk of WMSDs than single drivers (P<0.05). The lower the frequency of physical exercise, the longer the driving time per week, the longer the continuous driving time, the more restricted the driving working space, the poorer the foot comfort during driving, and the more affected the normal meal, the higher the risk of WMSDs (all P<0.05). The risk of WMSDs in drivers with sleep time ≤ 8.0 h/d was higher than that in drivers with sleep time > 8.0 h/d (P<0.01), and the risk of WMSDs in drivers with the same posture for a long time on the shoulder was higher than that in drivers without this poor working posture (P<0.01). Conclusion WMSDs were prevalent among passenger drivers, which was associated with demographic and adverse ergonomic factors. Intervention on lifestyle and adverse ergonomic factors could further reduce the risk of WMSDs of passenger drivers.
8.Association between bedroom nocturnal light exposure and objective sleep parameters in college students
ZHANG Anhui, YU Min, XU Yuxiang, SUN Ying
Chinese Journal of School Health 2025;46(8):1098-1101
Objective:
To investigate the cross sectional association between bedroom nocturnal light exposure and objectively measured sleep parameters in college students, so as to provide evidence for promoting sleep health.
Methods:
From September to October 2019, a convenience sampling method was used to recruit 365 healthy college students from two universities in Hefei, establishing a cohort. Bedroom nocturnal light exposure was measured at the individual level for two consecutive days using a portable illuminometer (TES-1339R; Taishi Corp, Taiwan, China). Sleep parameters were objectively measured over seven consecutive days using wrist worn accelerometers (ActiGraph GT3X-BT, Pensacola, FL). Multiple linear regression models were employed to examine the association between nocturnal light exposure and sleep parameters.
Results:
Compared to the low nocturnal light exposure (<3 lx) group, the high exposure (≥3 lx) group exhibited significantly lower sleep efficiency[(93.5± 2.7 )%,(92.2±2.9)%, t =3.93], longer wake after sleep onset (WASO)[(24.7±90.3)(29.2±11.2)min, t =-3.66], higher movement index(11.0±3.6, 12.2± 3.8, t =-2.80), and higher sleep fragmentation index(20.5±6.5,23.0±7.0, t =-3.24) (all P <0.01). After adjusting for covariates,multiple linear regression showed that,compared to the low nocturnal light exposure group, the high exposure group had reduced sleep efficiency ( β =-1.15, 95% CI =-1.78 to -0.52), increased WASO [ β (95% CI )=3.94(1.55- 6.33 )], higher movement index[ β (95% CI )=1.05(0.20-1.89)], and elevated sleep fragmentation index[ β (95% CI )=2.35(0.81-3.88)](all P <0.05).
Conclusions
Light exposure at night negatively impacts college students sleep. Optimizing bedroom lighting management may improve sleep quality in adolescents.
9.Prediction of Pulmonary Nodule Progression Based on Multi-modal Data Fusion of CCNet-DGNN Model
Lehua YU ; Yehui PENG ; Wei YANG ; Xinghua XIANG ; Rui LIU ; Xiongjun ZHAO ; Maolan AYIDANA ; Yue LI ; Wenyuan XU ; Min JIN ; Shaoliang PENG ; Baojin HUA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):135-143
ObjectiveThis study aims to develop and validate a novel multimodal predictive model, termed criss-cross network(CCNet)-directed graph neural network(DGNN)(CGN), for accurate assessment of pulmonary nodule progression in high-risk individuals for lung cancer, by integrating longitudinal chest computed tomography(CT) imaging with both traditional Chinese and western clinical evaluation data. MethodsA cohort of 4 432 patients with pulmonary nodules was retrospectively analyzed. A twin CCNet was employed to extract spatiotemporal representations from paired sequential CT scans. Structured clinical assessment and imaging-derived features were encoded via a multilayer perceptron, and a similarity-based alignment strategy was adopted to harmonize multimodal imaging features across temporal dimensions. Subsequently, a DGNN was constructed to integrate heterogeneous features, where nodes represented modality-specific embeddings and edges denoted inter-modal information flow. Finally, model optimization was performed using a joint loss function combining cross-entropy and cosine similarity loss, facilitating robust classification of nodule progression status. ResultsThe proposed CGN model demonstrated superior predictive performance on the held-out test set, achieving an area under the receiver operating characteristic curve(AUC) of 0.830, accuracy of 0.843, sensitivity of 0.657, specificity of 0.712, Cohen's Kappa of 0.417, and F1 score of 0.544. Compared with unimodal baselines, the CGN model yielded a 36%-48% relative improvement in AUC. Ablation studies revealed a 2%-22% increase in AUC when compared to simplified architectures lacking key components, substantiating the efficacy of the proposed multimodal fusion strategy and modular design. Incorporation of traditional Chinese medicine (TCM)-specific symptomatology led to an additional 5% improvement in AUC, underscoring the complementary value of integrating TCM and western clinical data. Through gradient-weighted activation mapping visualization analysis, it was found that the model's attention predominantly focused on nodule regions and effectively captured dynamic associations between clinical data and imaging-derived features. ConclusionThe CGN model, by synergistically combining cross-attention encoding with directed graph-based feature integration, enables effective alignment and fusion of heterogeneous multimodal data. The incorporation of both TCM and western clinical information facilitates complementary feature enrichment, thereby enhancing predictive accuracy for pulmonary nodule progression. This approach holds significant potential for supporting intelligent risk stratification and personalized surveillance strategies in lung cancer prevention.
10.Pharmacokinetics study of single and multiple doses of azvudine in healthy young and elderly subjects
Yu ZHANG ; Xiao-Jian LIU ; Hao-Shuang JU ; Bin-Yuan HE ; Yuan-Hao WAN ; Li-Wei CHAI ; Le-Yang REN ; Min LÜ ; Ya-Qiang JIA ; Wei ZHANG ; Ping XU
The Chinese Journal of Clinical Pharmacology 2024;40(9):1316-1320
Objective To evaluate the pharmacokinetic characteristics and safety of single and multiple oral azvudine tablets in healthy young and elderly Chinese subjects.Methods This was a open-label and parallel-group study.The trial consisted of two groups:healthy young subjects group and healthy elderly subjects group,with 12 subjects in each group.Enrolled subjects were first given a single dose,fasting oral azvudine tablet 5 mg,after a 3-day cleansing period entered the multiple dose phase,fasting oral azvudine tablet 5 mg·d-1 for 7 days.Results After a single dose of azvudine 5 mg,Cmax and AUC0-∞ were(4.76±2.12)ng·mL-1,(6.53±2.20)ng·mL-1·h,and Tmax,t1/2 were 0.75,1.87 h in young subjects;Cmax and AUC0-∞ were(6.40±3.25)ng·mL-1,(9.50±3.70)ng·mL-1·h,and Tmax,t1/2 were 0.63,2.66 h in elderly subjects.After a multiple dose of azvudine 5 mg·d-1 for 7 d,Cmax and AUC0-∞ were(3.26±1.61)ng·mL-1,(5.38±2.19)ng·mL-1·h,and Tmax,ss,t1/2,ss were 0.88,2.13 h in young subjects;Cmax,ss and AUC0-∞,ss were(3.97±2.09)ng·mL-1,(6.71±3.26)ng·mL-1·h,and Tmax,ss,t1/2,ss were 0.75,2.56 h in elderly subjects.Elderly/young geometric mean ratios and 90%CIs were 128.37%(88.23%-186.76%),139.93%(105.42%-185.72%),140.03%(106.33%-184.41%)for azvudine Cmax,AUC0-t,AUC0-∞ after a single dose,and were 118.66%(80.83%-174.20%),118.41%(83.60%-167.69%),118.95%(84.78%-166.89%)for azvudine Cmax,AUC0-t,AUC0_∞ after a multiple dose of azvudine 5 mg·d-1 for 7 d.Conclusion After single and multiple oral administration of azvudine tablets,systemic exposure to azvudine was higher in healthy elderly subjects compared with healthy young subjects.After taking azvudine tablets,the types,severity and incidence of adverse events and adverse drug reactions in healthy elderly people were not significantly different from those in healthy young subjects.Azvudine was found to be safe and well tolerated in healthy elderly subjects.


Result Analysis
Print
Save
E-mail