1.Severity Assessment Parameters and Diagnostic Technologies of Obstructive Sleep Apnea
Zhuo-Zhi FU ; Ya-Cen WU ; Mei-Xi LI ; Ping-Ping YIN ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(1):147-161
Obstructive sleep apnea (OSA) is an increasingly widespread sleep-breathing disordered disease, and is an independent risk factor for many high-risk chronic diseases such as hypertension, coronary heart disease, stroke, arrhythmias and diabetes, which is potentially fatal. The key to the prevention and treatment of OSA is early diagnosis and treatment, so the assessment and diagnostic technologies of OSA have become a research hotspot. This paper reviews the research progresses of severity assessment parameters and diagnostic technologies of OSA, and discusses their future development trends. In terms of severity assessment parameters of OSA, apnea hypopnea index (AHI), as the gold standard, together with the percentage of duration of apnea hypopnea (AH%), lowest oxygen saturation (LSpO2), heart rate variability (HRV), oxygen desaturation index (ODI) and the emerging biomarkers, constitute a multi-dimensional evaluation system. Specifically, the AHI, which measures the frequency of sleep respiratory events per hour, does not fully reflect the patients’ overall sleep quality or the extent of their daytime functional impairments. To address this limitation, the AH%, which measures the proportion of the entire sleep cycle affected by apneas and hypopneas, deepens our understanding of the impact on sleep quality. The LSpO2 plays a critical role in highlighting the potential severe hypoxic episodes during sleep, while the HRV offers a different perspective by analyzing the fluctuations in heart rate thereby revealing the activity of the autonomic nervous system. The ODI provides a direct and objective measure of patients’ nocturnal oxygenation stability by calculating the number of desaturation events per hour, and the biomarkers offers novel insights into the diagnosis and management of OSA, and fosters the development of more precise and tailored OSA therapeutic strategies. In terms of diagnostic techniques of OSA, the standardized questionnaire and Epworth sleepiness scale (ESS) is a simple and effective method for preliminary screening of OSA, and the polysomnography (PSG) which is based on recording multiple physiological signals stands for gold standard, but it has limitations of complex operations, high costs and inconvenience. As a convenient alternative, the home sleep apnea testing (HSAT) allows patients to monitor their sleep with simplified equipment in the comfort of their own homes, and the cardiopulmonary coupling (CPC) offers a minimal version that simply analyzes the electrocardiogram (ECG) signals. As an emerging diagnostic technology of OSA, machine learning (ML) and artificial intelligence (AI) adeptly pinpoint respiratory incidents and expose delicate physiological changes, thus casting new light on the diagnostic approach to OSA. In addition, imaging examination utilizes detailed visual representations of the airway’s structure and assists in recognizing structural abnormalities that may result in obstructed airways, while sound monitoring technology records and analyzes snoring and breathing sounds to detect the condition subtly, and thus further expands our medical diagnostic toolkit. As for the future development directions, it can be predicted that interdisciplinary integrated researches, the construction of personalized diagnosis and treatment models, and the popularization of high-tech in clinical applications will become the development trends in the field of OSA evaluation and diagnosis.
2.Research on the self-assessment tool for medical professionalism
Yu WANG ; Mei YIN ; Xuesong WU
Chinese Medical Ethics 2025;38(3):370-377
ObjectiveTo develop a self-assessment tool for medical professionalism (MP), by comprehensively combing domestic and international definitions of the concept of MP and the core elements of MP, and based on several rounds of expert consultation and China’s medical realities. MethodsAn assessment scale of MP was developed using 1,626 valid physician survey data from 128 medical institutions of all levels in one province. ResultsThe scale of MP consisted of five factors, including patient-centered, integrity and sense of responsibility, altruism, fair and equitable distribution of limited resources, and pursuit of excellence. After testing, the scale has good reliability and validity. ConclusionThe self-evaluation tool of MP provides an effective means for fostering, assessing, and evaluating MP in practice, and has a certain degree of generalizability.
3.Combined anterior and posterior miniscrews increase apical root resorption of maxillary incisors in protrusion and premolar extraction cases
Zhizun WANG ; Li MEI ; Zhenxing TANG ; Dong WU ; Yue ZHOU ; Ehab A. ABDULGHANI ; Yuan LI ; Wei ZHENG ; Yu LI
The Korean Journal of Orthodontics 2025;55(1):26-36
Objective:
Miniscrews are commonly utilized as temporary anchorage devices (TADs) in cases of maxillary protrusion and premolar extraction. This study aimed to investigate the effects and potential side effects of two conventional miniscrew configurations on the maxillary incisors.
Methods:
Eighty-two adult patients with maxillary dentoalveolar protrusion who had undergone bilateral first premolar extraction were retrospectively divided into three groups: non-TAD, two posterior miniscrews only (P-TADs), and two anterior and two posterior miniscrews combined (AP-TADs). Cone-beam computed tomography was used to evaluate the maxillary central incisors (U1).
Results:
The APTADs group had significantly greater U1 intrusion (1.99 ± 2.37 mm, n = 50) and less retroclination (1.70° ± 8.80°) compared to the P-TADs (–0.07 ± 1.65 mm and 9.45° ± 10.68°, n = 60) and non-TAD group (0.30 ± 1.61 mm and 1.91° ± 9.39°, n = 54).However, the AP-TADs group suffered from significantly greater apical root resorption (ARR) of U1 (2.69 ± 1.38 mm) than the P-TADs (1.63 ± 1.46 mm) and non-TAD group (0.89 ± 0.97 mm). Notably, the incidence of grade IV ARR was 16.6% in the AP-TADs group, significantly higher than the rates observed in the P-TADs (6.7%) and non-TAD (1.9%) groups. Multiple regression analysis revealed that after excluding tooth movement factors, the AP-TADs configuration resulted in an additional 0.5 mm of ARR compared with the P-TADs group.
Conclusions
In cases of maxillary protrusion and premolar extraction, the use of combined anterior and posterior miniscrews enhances incisor intrusion and minimizes torque loss of the maxillary incisors. However, this approach results in more severe ARR, likely due to the increased apical movement and composite force exerted.
4.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
5.Combined anterior and posterior miniscrews increase apical root resorption of maxillary incisors in protrusion and premolar extraction cases
Zhizun WANG ; Li MEI ; Zhenxing TANG ; Dong WU ; Yue ZHOU ; Ehab A. ABDULGHANI ; Yuan LI ; Wei ZHENG ; Yu LI
The Korean Journal of Orthodontics 2025;55(1):26-36
Objective:
Miniscrews are commonly utilized as temporary anchorage devices (TADs) in cases of maxillary protrusion and premolar extraction. This study aimed to investigate the effects and potential side effects of two conventional miniscrew configurations on the maxillary incisors.
Methods:
Eighty-two adult patients with maxillary dentoalveolar protrusion who had undergone bilateral first premolar extraction were retrospectively divided into three groups: non-TAD, two posterior miniscrews only (P-TADs), and two anterior and two posterior miniscrews combined (AP-TADs). Cone-beam computed tomography was used to evaluate the maxillary central incisors (U1).
Results:
The APTADs group had significantly greater U1 intrusion (1.99 ± 2.37 mm, n = 50) and less retroclination (1.70° ± 8.80°) compared to the P-TADs (–0.07 ± 1.65 mm and 9.45° ± 10.68°, n = 60) and non-TAD group (0.30 ± 1.61 mm and 1.91° ± 9.39°, n = 54).However, the AP-TADs group suffered from significantly greater apical root resorption (ARR) of U1 (2.69 ± 1.38 mm) than the P-TADs (1.63 ± 1.46 mm) and non-TAD group (0.89 ± 0.97 mm). Notably, the incidence of grade IV ARR was 16.6% in the AP-TADs group, significantly higher than the rates observed in the P-TADs (6.7%) and non-TAD (1.9%) groups. Multiple regression analysis revealed that after excluding tooth movement factors, the AP-TADs configuration resulted in an additional 0.5 mm of ARR compared with the P-TADs group.
Conclusions
In cases of maxillary protrusion and premolar extraction, the use of combined anterior and posterior miniscrews enhances incisor intrusion and minimizes torque loss of the maxillary incisors. However, this approach results in more severe ARR, likely due to the increased apical movement and composite force exerted.
6.Combined anterior and posterior miniscrews increase apical root resorption of maxillary incisors in protrusion and premolar extraction cases
Zhizun WANG ; Li MEI ; Zhenxing TANG ; Dong WU ; Yue ZHOU ; Ehab A. ABDULGHANI ; Yuan LI ; Wei ZHENG ; Yu LI
The Korean Journal of Orthodontics 2025;55(1):26-36
Objective:
Miniscrews are commonly utilized as temporary anchorage devices (TADs) in cases of maxillary protrusion and premolar extraction. This study aimed to investigate the effects and potential side effects of two conventional miniscrew configurations on the maxillary incisors.
Methods:
Eighty-two adult patients with maxillary dentoalveolar protrusion who had undergone bilateral first premolar extraction were retrospectively divided into three groups: non-TAD, two posterior miniscrews only (P-TADs), and two anterior and two posterior miniscrews combined (AP-TADs). Cone-beam computed tomography was used to evaluate the maxillary central incisors (U1).
Results:
The APTADs group had significantly greater U1 intrusion (1.99 ± 2.37 mm, n = 50) and less retroclination (1.70° ± 8.80°) compared to the P-TADs (–0.07 ± 1.65 mm and 9.45° ± 10.68°, n = 60) and non-TAD group (0.30 ± 1.61 mm and 1.91° ± 9.39°, n = 54).However, the AP-TADs group suffered from significantly greater apical root resorption (ARR) of U1 (2.69 ± 1.38 mm) than the P-TADs (1.63 ± 1.46 mm) and non-TAD group (0.89 ± 0.97 mm). Notably, the incidence of grade IV ARR was 16.6% in the AP-TADs group, significantly higher than the rates observed in the P-TADs (6.7%) and non-TAD (1.9%) groups. Multiple regression analysis revealed that after excluding tooth movement factors, the AP-TADs configuration resulted in an additional 0.5 mm of ARR compared with the P-TADs group.
Conclusions
In cases of maxillary protrusion and premolar extraction, the use of combined anterior and posterior miniscrews enhances incisor intrusion and minimizes torque loss of the maxillary incisors. However, this approach results in more severe ARR, likely due to the increased apical movement and composite force exerted.
7.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
8.Combined anterior and posterior miniscrews increase apical root resorption of maxillary incisors in protrusion and premolar extraction cases
Zhizun WANG ; Li MEI ; Zhenxing TANG ; Dong WU ; Yue ZHOU ; Ehab A. ABDULGHANI ; Yuan LI ; Wei ZHENG ; Yu LI
The Korean Journal of Orthodontics 2025;55(1):26-36
Objective:
Miniscrews are commonly utilized as temporary anchorage devices (TADs) in cases of maxillary protrusion and premolar extraction. This study aimed to investigate the effects and potential side effects of two conventional miniscrew configurations on the maxillary incisors.
Methods:
Eighty-two adult patients with maxillary dentoalveolar protrusion who had undergone bilateral first premolar extraction were retrospectively divided into three groups: non-TAD, two posterior miniscrews only (P-TADs), and two anterior and two posterior miniscrews combined (AP-TADs). Cone-beam computed tomography was used to evaluate the maxillary central incisors (U1).
Results:
The APTADs group had significantly greater U1 intrusion (1.99 ± 2.37 mm, n = 50) and less retroclination (1.70° ± 8.80°) compared to the P-TADs (–0.07 ± 1.65 mm and 9.45° ± 10.68°, n = 60) and non-TAD group (0.30 ± 1.61 mm and 1.91° ± 9.39°, n = 54).However, the AP-TADs group suffered from significantly greater apical root resorption (ARR) of U1 (2.69 ± 1.38 mm) than the P-TADs (1.63 ± 1.46 mm) and non-TAD group (0.89 ± 0.97 mm). Notably, the incidence of grade IV ARR was 16.6% in the AP-TADs group, significantly higher than the rates observed in the P-TADs (6.7%) and non-TAD (1.9%) groups. Multiple regression analysis revealed that after excluding tooth movement factors, the AP-TADs configuration resulted in an additional 0.5 mm of ARR compared with the P-TADs group.
Conclusions
In cases of maxillary protrusion and premolar extraction, the use of combined anterior and posterior miniscrews enhances incisor intrusion and minimizes torque loss of the maxillary incisors. However, this approach results in more severe ARR, likely due to the increased apical movement and composite force exerted.
9.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
10.Combined anterior and posterior miniscrews increase apical root resorption of maxillary incisors in protrusion and premolar extraction cases
Zhizun WANG ; Li MEI ; Zhenxing TANG ; Dong WU ; Yue ZHOU ; Ehab A. ABDULGHANI ; Yuan LI ; Wei ZHENG ; Yu LI
The Korean Journal of Orthodontics 2025;55(1):26-36
Objective:
Miniscrews are commonly utilized as temporary anchorage devices (TADs) in cases of maxillary protrusion and premolar extraction. This study aimed to investigate the effects and potential side effects of two conventional miniscrew configurations on the maxillary incisors.
Methods:
Eighty-two adult patients with maxillary dentoalveolar protrusion who had undergone bilateral first premolar extraction were retrospectively divided into three groups: non-TAD, two posterior miniscrews only (P-TADs), and two anterior and two posterior miniscrews combined (AP-TADs). Cone-beam computed tomography was used to evaluate the maxillary central incisors (U1).
Results:
The APTADs group had significantly greater U1 intrusion (1.99 ± 2.37 mm, n = 50) and less retroclination (1.70° ± 8.80°) compared to the P-TADs (–0.07 ± 1.65 mm and 9.45° ± 10.68°, n = 60) and non-TAD group (0.30 ± 1.61 mm and 1.91° ± 9.39°, n = 54).However, the AP-TADs group suffered from significantly greater apical root resorption (ARR) of U1 (2.69 ± 1.38 mm) than the P-TADs (1.63 ± 1.46 mm) and non-TAD group (0.89 ± 0.97 mm). Notably, the incidence of grade IV ARR was 16.6% in the AP-TADs group, significantly higher than the rates observed in the P-TADs (6.7%) and non-TAD (1.9%) groups. Multiple regression analysis revealed that after excluding tooth movement factors, the AP-TADs configuration resulted in an additional 0.5 mm of ARR compared with the P-TADs group.
Conclusions
In cases of maxillary protrusion and premolar extraction, the use of combined anterior and posterior miniscrews enhances incisor intrusion and minimizes torque loss of the maxillary incisors. However, this approach results in more severe ARR, likely due to the increased apical movement and composite force exerted.

Result Analysis
Print
Save
E-mail