1.Research progress on pentacyclic triterpenoids in medicinal Ilex species and their pharmacological activities.
Yu-Ling LIU ; Yi-Ran WU ; Bao-Lin WANG ; Xiao-Wei SU ; Qiu-Juan CHEN ; Yi RAO ; Shi-Lin YANG ; Li-Ni HUO ; Hong-Wei GAO
China Journal of Chinese Materia Medica 2025;50(12):3252-3266
Traditional Chinese medicine(TCM) capable of clearing heat and removing toxin is most commonly used in clinical practice and has the effect of removing fire-heat and toxin. Studies have shown that most of the Ilex plants have the effect of clearing heat and removing toxin, among which the varieties of I. cornuta, I. pubescens, I. rotunda, I. latifolia, and I. chinensis are most widely used. These plants generally contain triterpenoids and their glycosides, alkaloids, flavonoids, phenylpropanoids, and other chemical components, especially pentacyclic triterpenoids. According to their skeletons, pentacyclic triterpenoids can be divided into the oleanane type, the ursane type, the lupinane type, etc. Among them, ursane-type components are the most abundant, and 136 species have been found so far. These components have been proved to have pharmacological effects such as anti-inflammatory, anti-tumor, hypolipidemic, anti-thrombosis, cardiomyocyte-protective, antibacterial, and hepatoprotective effects. Therefore, this paper systematically reviews the domestic and foreign literature on Ilex plants with a focus on the research progress on pentacyclic triterpenoids and their pharmacological activities, aiming to provide reference for the development of TCM resources with the effect of clearing heat and removing toxin.
Ilex/chemistry*
;
Plants, Medicinal/chemistry*
;
Pentacyclic Triterpenes/pharmacology*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Animals
2.Characteristics of Gut Microbiota Changes and Their Relationship with Infectious Complications During Induction Chemotherapy in AML Patients.
Quan-Lei ZHANG ; Li-Li DONG ; Lin-Lin ZHANG ; Yu-Juan WU ; Meng LI ; Jian BO ; Li-Li WANG ; Yu JING ; Li-Ping DOU ; Dai-Hong LIU ; Zhen-Yang GU ; Chun-Ji GAO
Journal of Experimental Hematology 2025;33(3):738-744
OBJECTIVE:
To investigate the characteristics of gut microbiota changes in patients with acute myeloid leukemia (AML) undergoing induction chemotherapy and to explore the relationship between infectious complications and gut microbiota.
METHODS:
Fecal samples were collected from 37 newly diagnosed AML patients at four time points: before induction chemotherapy, during chemotherapy, during the neutropenic phase, and during the recovery phase. Metagenomic sequencing was used to analyze the dynamic changes in gut microbiota. Correlation analyses were conducted to assess the relationship between changes in gut microbiota and the occurrence of infectious complications.
RESULTS:
During chemotherapy, the gut microbiota α-diversity (Shannon index) of AML patients exhibited significant fluctuations. Specifically, the diversity decreased significantly during induction chemotherapy, further declined during the neutropenic phase (P < 0.05, compared to baseline), and gradually recovered during the recovery phase, though not fully returning to baseline levels.The abundances of beneficial bacteria, such as Firmicutes and Bacteroidetes, gradually decreased during chemotherapy, whereas the abundances of opportunistic pathogens, including Enterococcus, Klebsiella, and Escherichia coli, progressively increased.Analysis of the dynamic changes in gut microbiota of seven patients with bloodstream infections revealed that the bloodstream infection pathogens could be detected in the gut microbiota of the corresponding patients, with their abundance gradually increasing during the course of infection. This finding suggests that bloodstream infections may be associated with opportunistic pathogens originating from the gut microbiota.Compared to non-infected patients, the baseline samples of infected patients showed a significantly lower relative abundance of Bacteroidetes (P < 0.05). Regression analysis indicated that Bacteroidetes abundance is an independent predictive factor for infectious complications (P < 0.05, OR =13.143).
CONCLUSION
During induction chemotherapy in AML patients, gut microbiota α-diversity fluctuates significantly, and the abundance of opportunistic pathogens increase, which may be associated with bloodstream infections. Patients with lower baseline Bacteroidetes abundance are more prone to infections, and its abundance can serve as an independent predictor of infectious complications.
Humans
;
Gastrointestinal Microbiome
;
Leukemia, Myeloid, Acute/microbiology*
;
Induction Chemotherapy
;
Feces/microbiology*
;
Male
;
Female
;
Middle Aged
3.PARylation promotes acute kidney injury via RACK1 dimerization-mediated HIF-1α degradation.
Xiangyu LI ; Xiaoyu SHEN ; Xinfei MAO ; Yuqing WANG ; Yuhang DONG ; Shuai SUN ; Mengmeng ZHANG ; Jie WEI ; Jianan WANG ; Chao LI ; Minglu JI ; Xiaowei HU ; Xinyu CHEN ; Juan JIN ; Jiagen WEN ; Yujie LIU ; Mingfei WU ; Jutao YU ; Xiaoming MENG
Acta Pharmaceutica Sinica B 2025;15(9):4673-4691
Poly(ADP-ribosyl)ation (PARylation) is a specific form of post-translational modification (PTM) predominantly triggered by the activation of poly-ADP-ribose polymerase 1 (PARP1). However, the role and mechanism of PARylation in the advancement of acute kidney injury (AKI) remain undetermined. Here, we demonstrated the significant upregulation of PARP1 and its associated PARylation in murine models of AKI, consistent with renal biopsy findings in patients with AKI. This elevation in PARP1 expression might be attributed to trimethylation of histone H3 lysine 4 (H3K4me3). Furthermore, a reduction in PARylation levels mitigated renal dysfunction in the AKI mouse models. Mechanistically, liquid chromatography-mass spectrometry indicated that PARylation mainly occurred in receptor for activated C kinase 1 (RACK1), thereby facilitating its subsequent phosphorylation. Moreover, the phosphorylation of RACK1 enhanced its dimerization and accelerated the ubiquitination-mediated hypoxia inducible factor-1α (HIF-1α) degradation, thereby exacerbating kidney injury. Additionally, we identified a PARP1 proteolysis-targeting chimera (PROTAC), A19, as a PARP1 degrader that demonstrated superior protective effects against renal injury compared with PJ34, a previously identified PARP1 inhibitor. Collectively, both genetic and drug-based inhibition of PARylation mitigated kidney injury, indicating that the PARylated RACK1/HIF-1α axis could be a promising therapeutic target for AKI treatment.
4.Progress and challenges of functionalized bacterial encapsulation: A novel biotechnology for next-generation biotherapeutics.
Ying ZHANG ; Yuwei WU ; Xinyu ZHAO ; Qinghua YE ; Lulu CAO ; Ming LIU ; Bao GAO ; Qinya NIU ; Nuo CHEN ; Zixuan DUAN ; Yu DING ; Juan WANG ; Moutong CHEN ; Ying LI ; Qingping WU
Acta Pharmaceutica Sinica B 2025;15(10):5167-5191
The disturbance of the human microbiota influences the occurrence and progression of many diseases. Live therapeutic bacteria, with their genetic manipulability, anaerobic tendencies, and immunomodulatory properties, are emerging as promising therapeutic agents. However, their clinical applications face challenges in maintaining activity and achieving precise spatiotemporal release, particularly in the harsh gastrointestinal environment. This review highlights the innovative bacterial functionalized encapsulation strategies developed through advances in physicochemical and biological techniques. We comprehensively review how bacterial encapsulation strategies can be used to provide physical barriers and enhanced adhesion properties to live microorganisms, while introducing superior material properties to live bacteria. In addition, this review outlines how bacterial surface coating can facilitate targeted delivery and precise spatiotemporal release of live bacteria. Furthermore, it elucidates their potential applications for treating different diseases, along with critical perspectives on challenges in clinical translation. This review comprehensively analyzes the connection between functionalized bacterial encapsulation and innovative biomedical applications, providing a theoretical reference for the development of next-generation bacterial therapies.
5.Evolution-guided design of mini-protein for high-contrast in vivo imaging.
Nongyu HUANG ; Yang CAO ; Guangjun XIONG ; Suwen CHEN ; Juan CHENG ; Yifan ZHOU ; Chengxin ZHANG ; Xiaoqiong WEI ; Wenling WU ; Yawen HU ; Pei ZHOU ; Guolin LI ; Fulei ZHAO ; Fanlian ZENG ; Xiaoyan WANG ; Jiadong YU ; Chengcheng YUE ; Xinai CUI ; Kaijun CUI ; Huawei CAI ; Yuquan WEI ; Yang ZHANG ; Jiong LI
Acta Pharmaceutica Sinica B 2025;15(10):5327-5345
Traditional development of small protein scaffolds has relied on display technologies and mutation-based engineering, which limit sequence and functional diversity, thereby constraining their therapeutic and application potential. Protein design tools have significantly advanced the creation of novel protein sequences, structures, and functions. However, further improvements in design strategies are still needed to more efficiently optimize the functional performance of protein-based drugs and enhance their druggability. Here, we extended an evolution-based design protocol to create a novel minibinder, BindHer, against the human epidermal growth factor receptor 2 (HER2). It not only exhibits super stability and binding selectivity but also demonstrates remarkable properties in tissue specificity. Radiolabeling experiments with 99mTc, 68Ga, and 18F revealed that BindHer efficiently targets tumors in HER2-positive breast cancer mouse models, with minimal nonspecific liver absorption, outperforming scaffolds designed through traditional engineering. These findings highlight a new rational approach to automated protein design, offering significant potential for large-scale applications in therapeutic mini-protein development.
6.ARID1A IDR targets EWS-FLI1 condensates and finetunes chromatin remodeling.
Jingdong XUE ; Siang LV ; Ming YU ; Yixuan PAN ; Ningzhe LI ; Xiang XU ; Qi ZHANG ; Mengyuan PENG ; Fang LIU ; Xuxu SUN ; Yimin LAO ; Yanhua YAO ; Juan SONG ; Jun WU ; Bing LI
Protein & Cell 2025;16(1):64-71
7.Genome-wide investigation of transcription factor footprints and dynamics using cFOOT-seq.
Heng WANG ; Ang WU ; Meng-Chen YANG ; Di ZHOU ; Xiyang CHEN ; Zhifei SHI ; Yiqun ZHANG ; Yu-Xin LIU ; Kai CHEN ; Xiaosong WANG ; Xiao-Fang CHENG ; Baodan HE ; Yutao FU ; Lan KANG ; Yujun HOU ; Kun CHEN ; Shan BIAN ; Juan TANG ; Jianhuang XUE ; Chenfei WANG ; Xiaoyu LIU ; Jiejun SHI ; Shaorong GAO ; Jia-Min ZHANG
Protein & Cell 2025;16(11):932-952
Gene regulation relies on the precise binding of transcription factors (TFs) at regulatory elements, but simultaneously detecting hundreds of TFs on chromatin is challenging. We developed cFOOT-seq, a cytosine deaminase-based TF footprinting assay, for high-resolution, quantitative genome-wide assessment of TF binding in both open and closed chromatin regions, even with small cell numbers. By utilizing the dsDNA deaminase SsdAtox, cFOOT-seq converts accessible cytosines to uracil while preserving genomic integrity, making it compatible with techniques like ATAC-seq for sensitive and cost-effective detection of TF occupancy at the single-molecule and single-cell level. Our approach enables the delineation of TF footprints, quantification of occupancy, and examination of chromatin influences on TF binding. Notably, cFOOT-seq, combined with FootTrack analysis, enables de novo prediction of TF binding sites and tracking of TF occupancy dynamics. We demonstrate its application in capturing cell type-specific TFs, analyzing TF dynamics during reprogramming, and revealing TF dependencies on chromatin remodelers. Overall, cFOOT-seq represents a robust approach for investigating the genome-wide dynamics of TF occupancy and elucidating the cis-regulatory architecture underlying gene regulation.
Transcription Factors/genetics*
;
Humans
;
Chromatin/genetics*
;
Animals
;
Binding Sites
;
Mice
;
DNA Footprinting/methods*
8.Analysis of risk factors and severity prediction of acute pancreatitis induced by pegaspargase in children
Xiaorong LAI ; Lihua YU ; Lulu HUANG ; Danna LIN ; Li WU ; Yajie ZHANG ; Juan ZI ; Xu LIAO ; Yuting YUAN ; Lihua YANG
Chinese Journal of Applied Clinical Pediatrics 2024;39(3):170-175
Objective:To analyze the risk factors for asparaginase-associated pancreatitis (AAP) in children with acute lymphoblastic leukemia (ALL) after treatment with pegaspargase and evaluate the predictive value of pediatric sequential organ failure assessment (SOFA) score, pediatric acute pancreatitis severity (PAPS) score, Ranson′s score and pediatric Ministry of Health, Labour and Welfare of Japan (JPN) score for severe AAP.Methods:Cross-sectional study.The clinical data of 328 children with ALL who received pegaspargase treatment in the Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University from January 2014 to August 2021, as well as their clinical manifestations, laboratory examinations, and imaging examinations were collected.The SOFA score at the time of AAP diagnosis, PAPS score and Ranson′s score at 48 hours after AAP diagnosis, and JPN score at 72 hours after AAP diagnosis were calculated, and their predictive value for severe AAP was evaluated by the receiver operating characteristic (ROC) curve.Results:A total of 6.7%(22/328) of children had AAP, with the median age of 6.62 years.AAP most commonly occurred in the induced remission phase (16/22, 72.7%). Three AAP children were re-exposed to asparaginase, and 2 of them developed a second AAP.Among the 22 AAP children, 16 presented with mild symptoms, and 6 with severe symptoms.The 6 children with severe AAP were all transferred to the Pediatric Intensive Care Unit (PICU). There were no significant differences in gender, white blood cell count at first diagnosis, immunophenotype, risk stratification, and single dose of pegaspargase between the AAP and non-AAP groups.The age at diagnosis of ALL in the AAP group was significantly higher than that in the non-AAP group ( t=2.385, P=0.018). The number of overweight or obese children in the AAP group was also higher than that in the non-AAP group ( χ2=4.507, P=0.034). The areas under the ROC curve of children′s JPN score, SOFA score, Ranson′s score, and PAPS score in predicting severe AAP were 0.919, 0.844, 0.731, and 0.606, respectively.The JPN score ( t=4.174, P=0.001) and the SOFA score ( t=3.181, P=0.005) showed statistically significant differences between mild and severe AAP. Conclusions:AAP is a serious complication in the treatment of ALL with combined pegaspargase and chemotherapy.Older age and overweight or obesity may be the risk factors for AAP.Pediatric JPN and SOFA scores have predictive value for severe AAP.
9.Comparison of IOL Master 700 versus Lenstar LS900 for preoperative biometric measurement and intraocular lens calculation in cataract patients with high myopia
Lusha* TAO ; Ling* GAO ; Juan YU ; Ying FENG ; Shuang CHEN ; Min WU
International Eye Science 2024;24(4):612-617
AIM:To compare the differences, correlations and consistency of IOL Master 700 or Lenstar LS900 in preoperative ocular biometry and the accuracy of intraocular lens(IOL)degree calculation of cataract patients with high myopia.METHODS: Retrospective study. A total of 136 cases(136 eyes)of high myopia and cataract patients who underwent phacoemulsification at the ophthalmology department of Army Medical Center of PLA from March 2021 to March 2023 were collected, with a mean age of 57.38±8.08 years. Patients were divided into 3 groups based on axial length(AL): 41 eyes in group A(26 mm≤ AL ≤28 mm), 43 eyes in group B(28 mm< AL ≤30 mm)and 52 eyes in group C(AL >30 mm). AL, mean keratometry(Km), anterior chamber depth(ACD), lens thickness(LT)and white-to-white(WTW)were preoperatively measured by two instruments, respectively. Barrett Universal II formula was used to calculate the IOL degrees of all patients, the appropriate reserved diopter was decided individually, and the prediction error(PE)and absolute error(AE)of the two instruments were compared.RESULTS:The AL and ACD of patients in the three groups measured by Lenstar LS900 were higher than the AL measurd by IOL Master 700(all P<0.05), with a difference of AL measured by the two devices: group C>group B>group A. However, there was no statistical significance in LT, Km, and WTW measured by the two instruments(all P>0.05). All biometric parameters measured by the two devices were positively correlated(all r>0.9, P<0.05), and consistent(95% LoA of all groups were narrow). There was no statistically significant difference in AE calculated by the two devices(P>0.05), but the IOL Master 700 calculated a smaller PE than Lenstar LS900(P<0.05), with lower percentage of hyperopic shift in IOL Master 700.CONCLUSION:In cataract patients with high myopia, AL measured by Lenstar LS900 is longer than that by IOL Master 700, and the differences of AL increase along with the growth of AL. Both devices have a good prediction for IOL calculation, but IOL Master 700 has less refractive error, lower percentage of hyperopic shift, and greater clinical advantages IOL Master 700.
10.The Research Status of Novel Coronavirus Antibodies and Small Molecule Inhibitors
Xin WU ; Han-Jie YU ; Xiao-Juan BAO ; Yu-Zi WANG ; Zheng LI
Progress in Biochemistry and Biophysics 2024;51(4):754-771
The World Health Organization has declared that the outbreak of coronavirus disease 2019(COVID-19) is a global pandemic. As mutations occurred in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the global epidemic still needs further concern. Worryingly, the effectiveness and neutralizing activity of existing antibodies and vaccines against SARS-CoV-2 variants is declining. There is an urgent need to find an effective antiviral medication with broad-spectrum inhibitory effects on novel coronavirus mutant strains against the SARS-CoV-2 infection. Neutralizing antibodies play an important role in the prevention and treatment of COVID-19. The interaction of spike-receptor-binding domain (Spike-RBD) of SARS-CoV-2 and human angiotensin-converting enzyme 2 (ACE2) is the first and critical step of SARS-CoV-2 infection. Hence, the SARS-CoV-2 Spike-RBD is a hot target for neutralizing antibodies development. Evusheld, the combination of Tixagevimab and Cilgavimab monoclonal antibodies (mAbs) targeting Spike-RBD exhibits neutralizing activity against BA.2.12.1, BA.4 and BA.5, which could be used as pre-exposure prophylaxis against SARS-CoV-2 infection. The nucleocapsid (N) protein is a conservative and high-abundance structural protein of SARS-CoV-2. The nCoV396 monoclonal antibody, isolated from the blood of convalescent COVID-19 patients against the N protein of SARS-CoV-2. This mAb not only showed neutralizing activity but also inhibits hyperactivation of complement and lung injury induced by N protein. The mAb 3E8 targeting ACE2 showed broadly neutralizing activity against SARS-CoV-2 and D614G, B.1.1.7, B.1.351, B.1.617.1 and P.1 variants in vitro and in vivo, but did not impact the biological activity of ACE2. Compared with neutralizing antibodies, small molecule inhibitors have several advantages, such as broad-spectrum inhibitory effect, low cost, and simple administration methods. Several small-molecule inhibitors disrupt viral binding by targeting the ACE2 and N-terminal domain (NTD) of SARS-CoV-2 spike protein. Known drugs such as chloroquine and hydroxychloroquine could also block the infection of SARS-CoV-2 by interacting with residue Lys353 in the peptidase domain of ACE2. The transmembrane protease serine 2 (TMPRSS2) inhibitors Camostat mesylate and Proxalutamide inhibit infection by blocking TMPRSS2 mediates viral membrane fusion. The main protease inhibitor Paxlovid and RNA-dependent RNA polymerase inhibitor Azvudine have been approved for treatment of COVID-19 patients. This review summarizes the current research status of neutralizing antibodies and small molecule inhibitors and prospects for their application. We expect to provide more valuable information for further studies in this field.

Result Analysis
Print
Save
E-mail