1.Exploring the inhibitory effect and mechanism of isorhamnetin therapy on oral squamous cell carcinoma based on network pharmacology and molecular docking
YU Fangfang ; ZHOU Jingjing ; YANG Jie ; QU Huijuan ; HUI Guangyan
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(1):14-23
Objective :
To explore the mechanism of isorhamnetin (Iso) in the treatment of oral squamous cell carcinoma (OSCC) using network pharmacology and molecular docking methods and to verify it in vitro.
Methods :
The key targets were obtained by constructing the PPI protein interaction network based on the common intersection targets of Iso-OSCC. At the same time, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) were used to analyze the related signaling pathways of the intersection targets. Iso and core targets were also analyzed through molecular docking and visualization. Colony formation assay and Transwell assay were used to identify the effect of Iso on the proliferation and invasion of Cal-27 cells. Western blot was used to analyze the regulatory effects of different concentrations of Iso on estrogen receptor-1 (ESR1), phosphoinositide-3-kinase regulatory subunit-1 (PIK3R1), Src tyrosine kinase (SRC), and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway proteins.
Results:
A total of 269 potential intersection targets of Iso-regulated OSCC were obtained. According to the degree obtained by topological analysis, PIK3R1, AKT1, SRC, ESR1, and other core targets were screened out. KEGG analysis showed that 165 signaling pathways were enriched in the intersection targets of Iso-OSCC, among which the PI3K/AKT signaling pathway played an important role in the treatment of OSCC with Iso. Molecular docking results showed that the absolute value of binding energy between target proteins PIK3R1, AKT1, SRC, ESR1, and Iso was high. After Cal-27 cells were treated with Iso, the number of cell colony formations, the number of transmembrane cells, and the expression of PIK3R1, ESR1, SRC, p-PI3K, and p-AKT were negatively correlated with the increase in Iso concentration (P < 0.05).
Conclusion
Iso can inhibit PI3K/AKT signal transduction and influence the expression of PIK3R1, AKT1, SRC, and ESR1 proteins, thereby inhibiting the occurrence and development of OSCC.
2.The taste correction process of ibuprofen oral solution based on the combination of electronic tongue technology and artificial taste comprehensive evaluation
Rui YUAN ; Yun-ping QU ; Yan WANG ; Ya-xuan ZHANG ; Wan-ling ZHONG ; Xiao-yu FAN ; Hui-juan SHEN ; Yun-nan MA ; Jin-hong YE ; Jie BAI ; Shou-ying DU
Acta Pharmaceutica Sinica 2024;59(8):2404-2411
This experiment aims to study the taste-masking effects of different kinds of corrigent used individually and in combination on ibuprofen oral solution, in order to optimize the taste-masking formulation. Firstly, a wide range of corrigent and the mass fractions were extensively screened using electronic tongue technology. Subsequently, a combination of sensory evaluation, analytic hierarchy process (AHP)-fuzzy mathematics evaluation, and Box-Behnken experimental design were employed to comprehensively assess the taste-masking effects of different combinations of corrigent on ibuprofen oral solution, optimize the taste-masking formulation, and validate the results. The study received ethical approval from the Review Committee of the Beijing University of Chinese Medicine (ethical code: 2024BZYLL0102). The results showed that corrigent fractions and types were screened separately through single-factor experiments. Subsequently, a Box-Behnken response surface design combined with AHP and fuzzy mathematics evaluation was used to fit a functional model:
3.Analysis of Oral Absorption and Dietary Effects of Rosuvastatin Based on Physiologically Based Pharmacokinetic Model
Yewen SUN ; Yuchen QU ; Jie PAN ; Yunli YU
Chinese Journal of Modern Applied Pharmacy 2024;41(8):1021-1026
OBJECTIVE
To construct physiologically based pharmacokinetic model(PBPK) model of rosuvastatin in fasting state to predict its absorption in postprandial state and explore its possible food effect mechanism. At the same time, reasonable dietary suggestions were put forward for hyperlipidemia patients taking statins to improve the absorption of BCS Ⅲ statins.
METHODS
According to the literature and existing research, the physicochemical parameters, biopharmaceutical parameters and pharmacokinetic parameters of rosuvastatin modeling were obtained. The PBPK prediction model of rosuvastatin postprandial administration was established by GastroPlusTM software, and the model was verified by the measured blood concentration data to determine whether the drug absorption results of rosuvastatin postprandial can be accurately predicted, and the parameter sensitivity analysis was carried out.
RESULTS
The PBPK model of rosuvastatin was constructed to predict its postprandial absorption. The average folding error and absolute average folding error of the model prediction data and the measured data were calculated to be less than 2, and the fitting correlation coefficient combined with model verification showed that the fitting was good. At the same time, parameter sensitivity analysis showed that high-calorie diet, drug LogD and permeability had a greater impact on the absorption of rosuvastatin.
CONCLUSION
The established model can better predict the absorption of rosuvastatin after meals. Based on the results of parameter sensitivity analysis, reasonable dietary recommendations are proposed for hyperlipidemia patients taking BCSⅢ statins, including appropriately increasing the proportion of protein in the diet, reducing the proportion of fat and water-soluble dietary fiber, etc., to improve the intestinal absorption of BCSⅢ statins.
4.Advances in therapeutic drug monitoring methods based on liquid chromatography-tandem mass spectrometry
Ziying LI ; Jie XIE ; Ziyu QU ; You JIANG ; Di ZHANG ; Songlin YU ; Xiaoli MA ; Ling QIU ; Xinhua DAI ; Xiang FANG ; Xiaoping YU
Chinese Journal of Laboratory Medicine 2024;47(3):332-340
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology has the characteristics of high specificity and high throughput, making it rapidly applied and developed in the field of clinical testing. Its application in the monitoring of therapeutic drugs can effectively improve the quantitative accuracy and sensitivity, and formulate a personalized and optimal dosing plan for patients. However, this technology still faces some challenges, and automation, quality control, and quantitative traceability will be the future development direction.
5.Differential expression of virulence factors in clinical isolates of Candida parapsilosis
Yu-Jie QU ; Ting-Ting LI ; Mao-Yuan LI ; Fang-Fang HU ; Ting-Ting JIN ; Bin YANG ; Zhen-Hua LUO
Chinese Journal of Infection Control 2024;23(1):16-24
Objective To compare the differences in virulence-related factor aspartate protease,biofilm formation,and gene expression among clinical isolates of Candida parapsilosis(C.parapsilosis).Methods Gene sequencing and microsatellite typing(MT)method were adopted to identify C.parapsilosis isolated from patients with clinical fungal infection.The production of secreted aspartate protease and biofilm formation ability of each strain were de-tected,and the expression of biofilm formation related-genes BCR1,EFG1,and HWP1,as well as aspartate prote-ase virulence genes SAPP1,SAPP2,SAPP3 were compared among the strains.Results A total of 8 clinically iso-lated C.parapsilosis strains were collected,all of which were identified as genotype Ⅰ.Based on microsatellite ty-ping results,8 clinical strains were divided into 4 microsatellite types.G1,G2,and G3 strains isolated from the urine,peripherally inserted central catheters(PICC),and blood of patient A were of different subtypes.J1,J2,J3,J4,and J5 strains were of the same type,and isolated from blood specimens of patient B at different periods.All 8 clinical strains could form biofilm,and their biofilm formation ability was higher than that of the standard strain of C.parapsilosis(ATCC 22019).G1,G3 and J5 strains had strong biofilm formation ability,J1,J2,J3,and J4 strains had moderate biofilm formation ability,and G2 strain had weak biofilm formation ability.All of the eight clinical isolates secreted aspartate protease,and their in vitro expression levels of the enzyme were higher than that of the standard strain(ATCC 22019).G3,G1,and G2 strains showed low,moderate,and high in vitro enzyme expression respectively,with statistical differences(all P<0.05).Enzyme expressed moderately in J1 and J5 strains,and highly in J2,J3,and J4 strains.Difference between moderate and high expressions was statistically significant(P<0.05).The expression levels of biofilm formation genes BCR1,EFG1,and HWP1 in various strains isolated from patients A and B increased.In strains isolated from patient A,the expression level of EFG1 gene in G1 strain was higher than that in G2 strain(P<0.05).There was no statistically significant difference in BCR1,EFG1,and HWP1 gene expression levels among strains isolated from patient B.The expression levels of as-partate protein genes(SAPP1,SAPP2,and SAPP3)in various strains isolated from patients A and B increased.The expression levels of SAPP1 and SAPP2 in strain G1 were higher than those in G2 and G3(both P<0.05).There was no statistically significant difference in the expression levels of SAPP1,SAPP2,and SAPP3 genes in strains from patient B.Conclusion Clinical isolates of C.parapsilosis have higher biofilm formation and aspartate protease production abilities than standard strain.The expression of virulence factors varies among strains isolated from different specimens,while there is no significant difference in the expression of virulence factors among strains isolated at different periods.Patients may have been infected with different MT types of C.parapsilosis in multiple sites during the same period.
6.Study on the toxicity characteristics of a clinical bloodstream isolate of Salmonella Telelkebir
En-Hui ZHENG ; Yu-Feng QIU ; Jian-Hui CHEN ; Ya-Dong GAO ; Meng-Ying HUANG ; Qu-Wen LI ; Jie LIN ; Shun-Tai WENG
Chinese Journal of Zoonoses 2024;40(1):31-39
The ICR(Institute of Cancer Research)mouse infection model was constructed to study the pathogenicity of Sal-monella Telelkebir serotype,and the pathogenic identification of mouse isolates was carried out.Observe the bacterial excretion cycle,evaluate the pathogenicity of Salmonella serotype to mice,and calculate the LD50 by the changes in clinical characteris-tics,histopathology and tissue bacterial load of infected mice;by flight mass spectrometry,biochemical identification,serotype identification,molecular typing and other experiments,compared with human isolates;virulence gene analysis was carried out by PCR experiment and whole genome sequencing.The LD50 of Salmonella Telelkebir is 2.67 × 108 CFU/mL;curling and fluffing may occur 0.5 h after infection;autopsy of dead mice showed that the small intestine was severely congested,with more bubbles and fluid accumulation,cecal necrosis,liver apical degeneration and necrosis,necrotic foci on the surface of the kidney and spleen atrophy;the bacterial load of spleen,kidney,lung,liver and jejunum in mice reached its peak at 3 days after infection,while that of heart at 6 days;the bacterial excretion time of the high-dose group exceeded 100 days;The level of CD3 in tissues increased with increasing dose,with inflammatory cell infiltration,myocardial capillary dilation and hyperemia,large area of vacuoles,degeneration and necrosis of hepatocytes,obvious enlargement of splenic sinus,blurred zoning,thickening of glomerular basement membrane,partial exfoliation of ciliated epithelium,atrophy and exfoliation of jejunal villi;PCR and whole genome sequencing revealed Salmonella-related virulence genes such as cdtB,plt A and pltB.This study was the first to successfully establish the ICR mouse model of Salmonella Telelkebir,demonstrating that this serotype of Salmonella has some pathogenicity.
7.Quercetin alleviates podocyte injury by inhibiting inflammation and pyroptosis through SIRT1/STAT3/GSDME
Jie-Qiong WANG ; Ge LI ; Shao-Hua WANG ; Yu WAN ; Yun LIU ; Cong-Gai HUANG ; Qu-Lian GUO ; Fang-Fang ZHONG
Chinese Pharmacological Bulletin 2024;40(7):1279-1287
Aim To investigate the effect of quercetin(Que)on podocyte inflammatory injury and the under-lying mechanism.Methods MPC5 cells were divided into normal glucose group(NG),mannitol group(MA),high glucose group(HG)and high glucose+quercetin group(HG+Que).Cell proliferation and apoptosis were detected by CCK-8 and flow cytometry.The expression of SIRT1,STAT3,apoptosis-related proteins(Bax,Bcl-2,caspase-3)and pyroptosis pro-tein GSDME was detected by Western blot.The ex-pression levels of inflammatory factors(IL-6,TNF-α,IL-18,IL-1β)in cell supernatants were detected by ELISA.Then small interfering RNA technology was used to knockdown SIRT1 expression.To further eval-uate the biological significance of SIRT1 in response to high glucose and Que treatment,negative control group(HG+si-NC+Que)and SIRT1 interference group(HG+si-SIRT1+Que)were added in the presence of high glucose and Que.Results Compared with the high glucose group,40 μmol·L-1 Que could alleviate the apoptosis of MPC5 cells induced by high glucose,decrease the expression of apoptosis related protein Bax and caspase-3,as well as increase the expression of anti-apoptotic protein Bcl-2;ELISA results showed that Que could decrease the expression of TNF-α,IL-6,IL-1 β and IL-18 induced by high glucose.Mechanical-ly,Que could alleviate the inhibitory effect of high glu-cose on the expression of SIRT1,and further decrease the activation of STAT3 and N-GSDME,and inhibit pyroptosis.Compared with the si-NC group,si-SIRT1 group could reverse the protective effect of Que on the high glucose induced inflammatory damage of podo-cytes,the expression of apoptotic proteins Bax and caspase-3 increased,while the expression of anti-apop-totic protein Bcl-2 decreased.At the same time,the levels of inflammatory cytokines TNF-α,IL-6,IL-1 βand IL-18 in supernatants increased,and the expres-sion of STAT3 and N-GSDME increased.Conclusion Que could inhibit pyroptosis and relieve the inflam-matory damage of podocytes through SIRT1/STAT3/GSDME pathway.
8.Cytotoxicity of 4 Wild Mushrooms in a Case of Yunnan Sudden Unexplained Death.
Wu LONG ; Peng-Fei QU ; Lin MA ; Rui WANG ; Yan-Mei XI ; Yu-Hua LI ; Sheng-Jie NIE ; Ting DUAN ; Jin-Liang DU ; Xue TANG ; Jing-Feng ZHAO ; Pu-Ping LEI ; Yue-Bing WANG
Journal of Forensic Medicine 2023;39(2):121-128
OBJECTIVES:
To explore the cytotoxicity of four wild mushrooms involved in a case of Yunnan sudden unexplained death (YNSUD), to provide the experimental basis for prevention and treatment of YNSUD.
METHODS:
Four kinds of wild mushrooms that were eaten by family members in this YNSUD incident were collected and identified by expert identification and gene sequencing. Raw extracts from four wild mushrooms were extracted by ultrasonic extraction to intervene HEK293 cells, and the mushrooms with obvious cytotoxicity were screened by Cell Counting Kit-8 (CCK-8). The selected wild mushrooms were prepared into three kinds of extracts, which were raw, boiled, and boiled followed by enzymolysis. HEK293 cells were intervened with these three extracts at different concentrations. The cytotoxicity was detected by CCK-8 combined with lactate dehydrogenase (LDH) Assay Kit, and the morphological changes of HEK293 cells were observed under an inverted phase contrast microscope.
RESULTS:
Species identification indicated that the four wild mushrooms were Butyriboletus roseoflavus, Boletus edulis, Russula virescens and Amanita manginiana. Cytotoxicity was found only in Amanita manginiana. The raw extracts showed cytotoxicity at the mass concentration of 0.1 mg/mL, while the boiled extracts and the boiled followed by enzymolysis extracts showed obvious cytotoxicity at the mass concentration of 0.4 mg/mL and 0.7 mg/mL, respectively. In addition to the obvious decrease in the number of HEK293 cells, the number of synapses increased and the refraction of HEK293 cells was poor after the intervention of Amanita manginiana extracts.
CONCLUSIONS
The extracts of Amanita manginiana involved in this YNSUD case has obvious cytotoxicity, and some of its toxicity can be reduced by boiled and enzymolysis, but cannot be completely detoxicated. Therefore, the consumption of Amanita manginiana is potentially dangerous, and it may be one of the causes of the YNSUD.
Humans
;
HEK293 Cells
;
Sincalide
;
China
;
Amanita
;
Death, Sudden
9.A Virtual Reality Platform for Context-Dependent Cognitive Research in Rodents.
Xue-Tong QU ; Jin-Ni WU ; Yunqing WEN ; Long CHEN ; Shi-Lei LV ; Li LIU ; Li-Jie ZHAN ; Tian-Yi LIU ; Hua HE ; Yu LIU ; Chun XU
Neuroscience Bulletin 2023;39(5):717-730
Animal survival necessitates adaptive behaviors in volatile environmental contexts. Virtual reality (VR) technology is instrumental to study the neural mechanisms underlying behaviors modulated by environmental context by simulating the real world with maximized control of contextual elements. Yet current VR tools for rodents have limited flexibility and performance (e.g., frame rate) for context-dependent cognitive research. Here, we describe a high-performance VR platform with which to study contextual behaviors immersed in editable virtual contexts. This platform was assembled from modular hardware and custom-written software with flexibility and upgradability. Using this platform, we trained mice to perform context-dependent cognitive tasks with rules ranging from discrimination to delayed-sample-to-match while recording from thousands of hippocampal place cells. By precise manipulations of context elements, we found that the context recognition was intact with partial context elements, but impaired by exchanges of context elements. Collectively, our work establishes a configurable VR platform with which to investigate context-dependent cognition with large-scale neural recording.
Animals
;
Mice
;
Rodentia
;
Virtual Reality
;
Cognition
;
Recognition, Psychology
10.Effect of High-Concentration Uric Acid on Nitric Oxide.
Si-Yu QIN ; Rong-Yu LAN ; Jia ZENG ; Xue BAI ; Jing-Tao WANG ; Xiang-Lin YIN ; Rui-Jie QU ; Ming-Hai QU ; Hao JIANG ; Wen-Long LI ; Si-Ying PEI ; Zhi-Ling HOU ; Bao-Sheng GUAN ; Hong-Bin QIU
Acta Academiae Medicinae Sinicae 2023;45(4):666-671
Uric acid (UA) is the final product of purine metabolism in human body,and its metabolic disorder will induce hyperuricemia (HUA).The occurrence and development of HUA are associated with a variety of pathological mechanisms such as oxidative stress injury,activation of inflammatory cytokines,and activation of renin-angiotensin-aldosterone system.These mechanisms directly or indirectly affect the bioavailability of endogenous nitric oxide (NO).The decrease in NO bioavailability is common in the diseases with high concentration of UA as an independent risk factor.In this review,we summarize the mechanisms by which high concentrations of UA affect the endogenous NO bioavailability,with a focus on the mechanisms of high-concentration UA in decreasing the synthesis and/or increasing the consumption of NO.This review aims to provide references for alleviating the multisystem symptoms and improving the prognosis of HUA,and lay a theoretical foundation for in-depth study of the correlations between HUA and other metabolic diseases.
Humans
;
Nitric Oxide
;
Uric Acid
;
Hyperuricemia
;
Biological Availability
;
Cytokines


Result Analysis
Print
Save
E-mail