1.Small Intestine Lipid Absorption and Health: The Improvement Effect of Exercise Under The Challenge of High-fat Diet
Wei-Huan WANG ; Yu-Xi DAI ; Yu-Xiu HE
Progress in Biochemistry and Biophysics 2025;52(6):1560-1573
The two core causes of obesity in modern lifestyle are high-fat diet (HFD) and insufficient physical activity. HFD can lead to disruption of gut microbiota and abnormal lipid metabolism, further exacerbating the process of obesity. The small intestine, as the “first checkpoint” for the digestion and absorption of dietary lipids into the body, plays a pivotal role in lipid metabolism. The small intestine is involved in the digestion, absorption, transport, and synthesis of dietary lipids. The absorption of lipids in the small intestine is a crucial step, as overactive absorption leads to a large amount of lipids entering the bloodstream, which affects the occurrence of obesity. HFD can lead to insulin resistance, disruption of gut microbiota, and inflammatory response in the body, which can further induce lipid absorption and metabolism disorders in the small intestine, thereby promoting the occurrence of chronic metabolic diseases such as obesity. Long term HFD can accelerate pathological structural remodeling and lipid absorption dysfunction of the small intestine: after high-fat diet, the small intestine becomes longer and heavier, with excessive villi elongation and microvilli elongation, thereby increasing the surface area of lipid absorption and causing lipid overload in the small intestine. In addition, overexpression of small intestine uptake transporters, intestinal mucosal damage induced “intestinal leakage”, dysbiosis of intestinal microbiota, ultimately leading to abnormal lipid absorption and chronic inflammation, accelerating lipid accumulation and obesity. Exercise, as one of the important means of simple, economical, and effective proactive health interventions, has always been highly regarded for its role in improving lipid metabolism homeostasis. The effect of exercise on small intestine lipid absorption shows a dose-dependent effect. Moderate to low-intensity aerobic exercise can improve the intestinal microenvironment, regulate the structure and lipid absorption function of the small intestine, promote lipid metabolism and health, while vigorous exercise, excessive exercise, and long-term high-intensity training can cause intestinal discomfort, leading to the destruction of intestinal structure and related symptoms, affecting lipid absorption. Long term regular exercise can regulate the diversity of intestinal microbiota, inhibit inflammatory signal transduction such as NF-κB, enhance intestinal mucosal barrier function, and improve intestinal lipid metabolism disorders, further enhancing the process of small intestinal lipid absorption. Exercise also participates in the remodeling process of small intestinal epithelial cells, regulating epithelial structural homeostasis by activating cell proliferation related pathways such as Wnt/β-catenin. Exercise can regulate the expression of lipid transport proteins CD36, FATP, and NPC1L1, and regulate the function of small intestine lipid absorption. However, the research on the effects of long-term exercise on small intestine structure, villus structure, absorption surface area, and lipid absorption related proteins is not systematic enough, the results are inconsistent, and the relevant mechanisms are not clear. In the future, experimental research can be conducted on the dose-response relationship of different intensities and forms of exercise, exploring the mechanisms of exercise improving small intestine lipid absorption and providing theoretical reference for scientific weight loss. It should be noted that the intestine is an organ that is sensitive to exercise response. How to determine the appropriate range, threshold, and form of exercise intensity to ensure beneficial regulation of intestinal lipid metabolism induced by exercise should become an important research direction in the future.
2.Exercise Improves Metaflammation: The Potential Regulatory Role of BDNF
Yu-Xi DAI ; Wei-Huan WANG ; Yu-Xiu HE
Progress in Biochemistry and Biophysics 2025;52(9):2314-2331
Metaflammation is a crucial mechanism in the onset and advancement of metabolic disorders, primarily defined by the activation of immune cells and increased concentrations of pro-inflammatory substances. The function of brain-derived neurotrophic factor (BDNF) in modulating immune and metabolic processes has garnered heightened interest, as BDNF suppresses glial cell activation and orchestrates inflammatory responses in the central nervous system via its receptor tyrosine kinase receptor B (TrkB), while also diminishing local inflammation in peripheral tissues by influencing macrophage polarization. Exercise, as a non-pharmacological intervention, is extensively employed to enhance metabolic disorders. A crucial mechanism underlying its efficacy is the significant induction of BDNF expression in central (hypothalamus, hippocampus, prefrontal cortex, and brainstem) and peripheral (liver, adipose tissue, intestines, and skeletal muscle) tissues and organs. This induction subsequently regulates inflammatory responses, ameliorates metabolic conditions, and decelerates disease progression. Consequently, BDNF is considered a pivotal molecule in the motor-metabolic regulation axis. Despite prior suggestions that BDNF may have a role in the regulation of exercise-induced inflammation, systematic data remains inadequate. Since that time, the field continues to lack structured descriptions and conversations pertinent to it. As exercise physiology research has advanced, the academic community has increasingly recognized that exercise is a multifaceted activity regulated by various systems, with its effects contingent upon the interplay of elements such as type, intensity, and frequency of exercise. Consequently, it is imperative to transcend the prior study paradigm that concentrated solely on localized effects and singular mechanisms and transition towards a comprehensive understanding of the systemic advantages of exercise. A multitude of investigations has validated that exercise confers health advantages for individuals with metabolic disorders, encompassing youngsters, adolescents, middle-aged individuals, and older persons, and typically enhances health via BDNF secretion. However, exercise is a double-edged sword; the relationship between exercise and health is not linearly positive. Insufficient exercise is ineffective, while excessive exercise can be detrimental to health. Consequently, it is crucial to scientifically develop exercise prescriptions, define appropriate exercise loads, and optimize health benefits to regulate bodily metabolism. BDNF mitigates metaflammation via many pathways during exercise. Initially, BDNF suppresses pro-inflammatory factors and facilitates the production of anti-inflammatory factors by modulating bidirectional transmission between neural and immune cells, therefore diminishing the inflammatory response. Secondly, exercise stimulates the PI3K/Akt, AMPK, and other signaling pathways via BDNF, enhancing insulin sensitivity, reducing lipotoxicity, and fostering mitochondrial production, so further optimizing the body’s metabolic condition. Moreover, exercise-induced BDNF contributes to the attenuation of systemic inflammation by collaborating with several organs, enhancing hepatic antioxidant capacity, regulating immunological response, and optimizing “gut-brain” axis functionality. These processes underscore the efficacy of exercise as a non-pharmacological intervention for enhancing anti-inflammatory and metabolic health. Despite substantial experimental evidence demonstrating the efficacy of exercise in mitigating inflammation and enhancing BDNF levels, numerous limitations persist in the existing studies. Primarily, the majority of studies have concentrated on molecular biology and lack causal experimental evidence that explicitly confirms BDNF as a crucial mediator in the exercise regulation of metaflammation. Furthermore, the outcomes of current molecular investigations are inadequately applicable to clinical practice, and a definitive pathway of “exercise-BDNF-metaflammation” remains unestablished. Moreover, the existing research methodology, reliant on animal models or limited human subject samples, constrains the broad dissemination of the findings. Future research should progressively transition from investigating isolated and localized pathways to a comprehensive multilevel and multidimensional framework that incorporates systems biology and exercise physiology. Practically, there is an immediate necessity to undertake extensive, double-blind, randomized controlled longitudinal human studies utilizing multi-omics technologies (e.g., transcriptomics, proteomics, and metabolomics) to investigate the principal signaling pathways of BDNF-mediated metaflammation and to elucidate the causal relationships and molecular mechanisms involved. Establishing a more comprehensive scientific evidence system aims to furnish a robust theoretical framework and practical guidance for the mechanistic interpretation, clinical application, and pharmaceutical development of exercise in the prevention and treatment of metabolic diseases.
3.Application of melt electrowriting technology in tissue engineering
Yu JIANG ; Feng HE ; Huan LIU ; Ruixin WU
Chinese Journal of Tissue Engineering Research 2024;28(10):1606-1612
BACKGROUND:With computer-aided design,melt electrowriting technology can precisely construct 3D tissue engineering scaffolds with specific morphology,which has attracted increasing attention in tissue engineering. OBJECTIVE:To elaborate on the progress of melt electrowriting technology in tissue engineering in recent years. METHODS:PubMed and CNKI were used to retrieve articles about applications of melt electrowriting technology in tissue engineering.The search time was from March 2008 to February 2023.The search terms were"melt electrowriting,melt electrospinning,electrospinning,tissue engineering,scaffold,regeneration"in English and"melt electrowriting,electrospinning,tissue engineering"in Chinese.A preliminary screening of articles was performed by reading the titles and abstracts.Finally,69 articles were included for review. RESULTS AND CONCLUSION:(1)Melt electrowriting technology can achieve precise layer-by-layer deposition of fibers compared to traditional electrospinning technology,which better simulates the complex structure of natural tissues.Compared to other 3D printing technologies,smaller-diameter fibers can be prepared by melt electrowriting technology,resulting in highly ordered porous structures.(2)By combining with other scaffold preparation techniques or materials,such as fused deposition modeling,solution electrospinning technology,and hydrogel,melt electrowriting technology shows great potential in preparing complex tissue engineering scaffolds,which provides certain possibilities for achieving complex tissue regeneration.(3)The regeneration of complex tissues often involves blood vessels,nerves,and soft and hard tissues at the same time.The regeneration of blood vessels and nerves is of great significance to realize the physiological reconstruction of tissues.However,soft and hard tissues have certain difficulties to realize the coordinated regeneration of both due to their different biological and mechanical properties.Melt electrowriting technology has certain advantages in the field of bionic scaffolds due to its good biocompatibility,the ability to prepare multi-scale scaffolds and high porosity.
4.Scholars'consensus on the construction and development of chinese medical humanities:summary of"seminar on the construction of Chinese medical humanities"held in Harbin in August 2023
Jinfan WANG ; Mei YIN ; Yue WANG ; Huan LIU ; Zhong HE ; Yunzhang LIU ; Rui DENG ; Min CHEN ; Junrong LIU ; Yongfu CAO ; Donghong WANG ; Hongjiang ZHANG ; Fengxiang LU ; Yu CHENG ; Yuan HE ; Fang SHAN
Chinese Medical Ethics 2024;37(2):248-252
On August 2-4,2023,the"Third Summit Forum on'Building a Community of Shared Future for Doctors and Patients'"was jointly organized by institutions such as the Chinese Medical Ethics,the Hospital Humanities Management and Talent Training Special Committee of the China Population and Culture Promotion Association,Center for Ethical Studies of Renmin University of China,the Newspaper for China's Physicians,the China Health Law Society,the China Anti-Cancer Association,and the China Association For Ethical Studies in Harbin.The conference arranged a sub-forum for the"Seminar on the Construction of Chinese Medical Humanities",with domestic medical humanities scholars attending the conference.After heated discussions at the seminar,the Scholars'Consensus on the Construction and Development of Chinese Medical Humanities was formed.It was proposed that in the new era,it is urgent to build the medical humanities discipline,as well as lead the academic integration and development of medical humanities under the core socialist values.At the same time,for the construction of the medical humanities discipline,it is necessary to optimize the organizational mechanism,prosper and develop the overall framework of the medical humanities discipline,accelerate the construction of a professional teaching team for the medical humanities discipline,promote the establishment of a new carrier medical humanities education and teaching in cultivating morality and nurturing talents,as well as focus on solving problems related to the cultivation of medical humanities graduate students.
5.Development of a High-throughput Sequencing Platform for Detection of Viral Encephalitis Pathogens Based on Amplicon Sequencing
Li Ya ZHANG ; Zhe Wen SU ; Chen Rui WANG ; Yan LI ; Feng Jun ZHANG ; Hui Sheng LIU ; He Dan HU ; Xiao Chong XU ; Yu Jia YIN ; Kai Qi YIN ; Ying HE ; Fan LI ; Hong Shi FU ; Kai NIE ; Dong Guo LIANG ; Yong TAO ; Tao Song XU ; Feng Chao MA ; Yu Huan WANG
Biomedical and Environmental Sciences 2024;37(3):294-302
Objective Viral encephalitis is an infectious disease severely affecting human health.It is caused by a wide variety of viral pathogens,including herpes viruses,flaviviruses,enteroviruses,and other viruses.The laboratory diagnosis of viral encephalitis is a worldwide challenge.Recently,high-throughput sequencing technology has provided new tools for diagnosing central nervous system infections.Thus,In this study,we established a multipathogen detection platform for viral encephalitis based on amplicon sequencing. Methods We designed nine pairs of specific polymerase chain reaction(PCR)primers for the 12 viruses by reviewing the relevant literature.The detection ability of the primers was verified by software simulation and the detection of known positive samples.Amplicon sequencing was used to validate the samples,and consistency was compared with Sanger sequencing. Results The results showed that the target sequences of various pathogens were obtained at a coverage depth level greater than 20×,and the sequence lengths were consistent with the sizes of the predicted amplicons.The sequences were verified using the National Center for Biotechnology Information BLAST,and all results were consistent with the results of Sanger sequencing. Conclusion Amplicon-based high-throughput sequencing technology is feasible as a supplementary method for the pathogenic detection of viral encephalitis.It is also a useful tool for the high-volume screening of clinical samples.
6.Chemical constituents from the flower buds of Magnolia biondii and their in vitro acetylcholinesterase inhibitory activities
Yan-Gang CAO ; Jian-Chao WANG ; Meng-Na WANG ; Yu-Huan HE ; Hong-Wei LI ; Zhi-You HAO ; Xiao-Ke ZHENG ; Wei-Sheng FENG
Chinese Traditional Patent Medicine 2024;46(7):2278-2283
AIM To study the chemical constituents from flower buds of Magnolia biondii Pamp.and their in vitro acetylcholinesterase inhibitory activities.METHODS The 50% acetone extract from the flower buds of M.biondii was isolated and purified by Diaion HP-20,Toyopearl HW-40C,ODS and semi-preparative HPLC,then the structures of obtained compounds were identified by physicochemical properties and spectral data.The in vitro acetylcholinesterase inhibitory activities of these compounds were determined according to previous method established by research group.RESULTS Seventeen compounds were isolated and identified as crassifolioside(1),magnoloside B(2),rutin(3),isoquercitrin(4),quercetin(5),northalifoline(6),cordysinin B(7),thymidine(8),indazole(9),dihydrodehydrodiconiferyl alcohol(10),aesculetin(11),C-veratroylglycol(12),3,4-dihydroxyphenylethanol(13),3-methoxy-4-hydroxyphenylethanol(14),3,4-dihydroxybenzoic acid(15),2,4,6-trimethoxyphenol(16),syringic acid(17).CONCLUSION Compounds 1-17 are isolated from this plant for the first time,none of which show acetylcholinesterase inhibitory activities at the concentration of 20 μmol/L.
7.Genetic Subtypes and Pretreatment Drug Resistance in the Newly Reported Human Immunodeficiency Virus-Infected Men Aged≥50 Years Old in Guangxi.
Ning-Ye FANG ; Wen-Cui WEI ; Jian-Jun LI ; Ping CEN ; Xian-Xiang FENG ; Dong YANG ; Kai-Ling TANG ; Shu-Jia LIANG ; Yu-Lan SHAO ; Hua-Xiang LU ; He JIANG ; Qin MENG ; Shuai-Feng LIU ; Qiu-Ying ZHU ; Huan-Huan CHEN ; Guang-Hua LAN ; Shi-Xiong YANG ; Li-Fang ZHOU ; Jing-Lin MO ; Xian-Min GE
Acta Academiae Medicinae Sinicae 2023;45(3):399-404
Objective To analyze the genetic subtypes of human immunodeficiency virus (HIV) and the prevalence of pretreatment drug resistance in the newly reported HIV-infected men in Guangxi. Methods The stratified random sampling method was employed to select the newly reported HIV-infected men aged≥50 years old in 14 cities of Guangxi from January to June in 2020.The pol gene of HIV-1 was amplified by nested reverse transcription polymerase chain reaction and then sequenced.The mutation sites associated with drug resistance and the degree of drug resistance were then analyzed. Results A total of 615 HIV-infected men were included in the study.The genetic subtypes of CRF01_AE,CRF07_BC,and CRF08_BC accounted for 57.4% (353/615),17.1% (105/615),and 22.4% (138/615),respectively.The mutations associated with the resistance to nucleoside reverse transcriptase inhibitors (NRTI),non-nucleoside reverse transcriptase inhibitors (NNRTI),and protease inhibitors occurred in 8 (1.3%),18 (2.9%),and 0 patients,respectively.M184V (0.7%) and K103N (1.8%) were the mutations with the highest occurrence rates for the resistance to NRTIs and NNRTIs,respectively.Twenty-two (3.6%) patients were resistant to at least one type of inhibitors.Specifically,4 (0.7%),14 (2.3%),4 (0.7%),and 0 patients were resistant to NRTIs,NNRTIs,both NRTIs and NNRTIs,and protease inhibitors,respectively.The pretreatment resistance to NNRTIs had much higher frequency than that to NRTIs (2.9% vs.1.3%;χ2=3.929,P=0.047).The prevalence of pretreatment resistance to lamivudine,zidovudine,tenofovir,abacavir,rilpivirine,efavirenz,nevirapine,and lopinavir/ritonavir was 0.8%, 0.3%, 0.7%, 1.0%, 1.3%, 2.8%, 2.9%, and 0, respectively. Conclusions CRF01_AE,CRF07_BC,and CRF08_BC are the three major strains of HIV-infected men≥50 years old newly reported in Guangxi,2020,and the pretreatment drug resistance demonstrates low prevalence.
Male
;
Humans
;
Middle Aged
;
Reverse Transcriptase Inhibitors/therapeutic use*
;
HIV Infections/drug therapy*
;
Drug Resistance, Viral/genetics*
;
China/epidemiology*
;
Mutation
;
HIV-1/genetics*
;
Protease Inhibitors/therapeutic use*
;
Genotype
8.Strengthening the Disciplinary Construction of History of Medicine: A Call for Action by Chinese Academy of Medical Sciences & Peking Union Medical College.
Jian-Hong YAO ; Da-Qing ZHANG ; Xin-Zhong YU ; Shu-Jian ZHANG ; Yong-An ZHANG ; Xiang-Yin YANG ; Zhong HE ; Huan LIU ; Yong WANG ; Yue-Ying JIN
Chinese Medical Sciences Journal 2023;38(2):94-96
9.MSCs-derived apoptotic extracellular vesicles promote muscle regeneration by inducing Pannexin 1 channel-dependent creatine release by myoblasts.
Qingyuan YE ; Xinyu QIU ; Jinjin WANG ; Boya XU ; Yuting SU ; Chenxi ZHENG ; Linyuan GUI ; Lu YU ; Huijuan KUANG ; Huan LIU ; Xiaoning HE ; Zhiwei MA ; Qintao WANG ; Yan JIN
International Journal of Oral Science 2023;15(1):7-7
Severe muscle injury is hard to heal and always results in a poor prognosis. Recent studies found that extracellular vesicle-based therapy has promising prospects for regeneration medicine, however, whether extracellular vesicles have therapeutic effects on severe muscle injury is still unknown. Herein, we extracted apoptotic extracellular vesicles derived from mesenchymal stem cells (MSCs-ApoEVs) to treat cardiotoxin induced tibialis anterior (TA) injury and found that MSCs-ApoEVs promoted muscles regeneration and increased the proportion of multinucleated cells. Besides that, we also found that apoptosis was synchronized during myoblasts fusion and MSCs-ApoEVs promoted the apoptosis ratio as well as the fusion index of myoblasts. Furthermore, we revealed that MSCs-ApoEVs increased the relative level of creatine during myoblasts fusion, which was released via activated Pannexin 1 channel. Moreover, we also found that activated Pannexin 1 channel was highly expressed on the membrane of myoblasts-derived ApoEVs (Myo-ApoEVs) instead of apoptotic myoblasts, and creatine was the pivotal metabolite involved in myoblasts fusion. Collectively, our findings firstly revealed that MSCs-ApoEVs can promote muscle regeneration and elucidated that the new function of ApoEVs as passing inter-cell messages through releasing metabolites from activated Pannexin 1 channel, which will provide new evidence for extracellular vesicles-based therapy as well as improving the understanding of new functions of extracellular vesicles.
Creatine/metabolism*
;
Extracellular Vesicles
;
Muscle, Skeletal/metabolism*
;
Myoblasts/metabolism*
;
Regeneration
;
Connexins/metabolism*
10.Effects of staged acupuncture on endometrial receptivity and anxiety in patients with recurrent implantation failure of thin endometrium based on "thoroughfare vessel is the sea of blood" theory.
Li-Wei XING ; Zhe HE ; Yu-Huan SUN ; Ming HE ; Shun YU ; Yang CHEN ; Jin-Long XU ; Rui MEI ; Rong ZHAO
Chinese Acupuncture & Moxibustion 2023;43(3):289-293
OBJECTIVE:
To compare the clinical efficacy between staged acupuncture based on "thoroughfare vessel is the sea of blood" theory combined with routine hormone replacement cycle treatment and routine hormone replacement cycle treatment for patients with recurrent implantation failure (RIF) of thin endometrium.
METHODS:
A total of 72 RIF patients with thin endometrium were randomly divided into an observation group and a control group, 36 cases in each group. The patients in the control group were treated with routine hormone replacement cycle treatment. Based on the treatment of the control group, the patients in the observation group were treated with staged acupuncture based on "thoroughfare vessel is the sea of blood" theory. The main acupoints were Neiguan (PC 6) and Gongsun (SP 4), and the supplementary acupoints were selected according to the menstrual cycle and syndrome differentiation; the acupuncture was given once every other day, 3 times a week, for 3 consecutive menstrual cycles. The thickness and shape of endometrium, and Hamilton anxiety scale (HAMA) score were observed at implantation window before and after treatment; the clinical pregnancy rate, live birth rate and cycle cancellation rate were compared between the two groups; the correlation between endometrial thickness and HAMA score was analyzed.
RESULTS:
Compared before treatment, the endometrial thickness in the two groups and the proportion of type A+B endometrium in the observation group were increased (P<0.05), and the HAMA scores in the two groups were decreased (P<0.05) after treatment. The above indexes in the observation group were superior to those in the control group (P<0.05). The clinical pregnancy rate and live birth rate in the observation group were higher than those in the control group (P<0.05), and the cycle cancellation rate was lower than that in the control group (P<0.05). There was a negative correlation between endometrial thickness and HAMA score (P<0.05).
CONCLUSION
Based on the routine hormone replacement cycle treatment, the addition use of staged acupuncture based on "thoroughfare vessel is the sea of blood" theory could improve the thickness and shape of endometrium, relieve anxiety, increase the clinical pregnancy rate and live birth rate, and reduce the cycle cancellation rate in RIF patients with thin endometrium. The curative effect is superior to the routine hormone replacement cycle treatment alone.
Female
;
Pregnancy
;
Humans
;
Anxiety
;
Anxiety Disorders
;
Acupuncture Therapy
;
Endometrium
;
Hormones

Result Analysis
Print
Save
E-mail