1.Internal tension relieving technique assisted anterior cruciate ligament reconstruction to promote ligamentization of Achilles tendon grafts in small ear pigs in southern Yunnan province
Bohan XIONG ; Guoliang WANG ; Yang YU ; Wenqiang XUE ; Hong YU ; Jinrui LIU ; Zhaohui RUAN ; Yajuan LI ; Haolong LIU ; Kaiyan DONG ; Dan LONG ; Zhao CHEN
Chinese Journal of Tissue Engineering Research 2025;29(4):713-720
BACKGROUND:We have successfully established an animal model of small ear pig in southern Yunnan province with internal tension relieving technique combined with autologous Achilles tendon for anterior cruciate ligament reconstruction,and verified the stability and reliability of the model.However,whether internal tension relieving technique can promote the ligamentalization process of autologous Achilles tendon graft has not been studied. OBJECTIVE:To investigate the differences in the process of ligamentalization between conventional reconstruction and internal reduction reconstruction of the anterior cruciate ligament by gross view,histology and electron microscopy. METHODS:Thirty adult female small ear pigs in southern Yunnan province were selected.Anterior cruciate ligament reconstruction was performed on the left knee joint with the ipsilateral knee Achilles tendon(n=30 in the normal group),and anterior cruciate ligament reconstruction was performed on the right knee joint with the ipsilateral knee Achilles tendon combined with the internal relaxation and enhancement system(n=30 in the relaxation group).The autogenous right forelimb was used as the control group;the anterior cruciate ligament was exposed but not severed or surgically treated.At 12,24,and 48 weeks after surgery,10 animals were sacrificed,respectively.The left and right knee joint specimens were taken for gross morphological observation to evaluate the graft morphology.MAS score was used to evaluate the excellent and good rate of the ligament at each time point.Hematoxylin-eosin staining was used to evaluate the degree of ligament graft vascularization.Collagen fibers and nuclear morphology were observed,and nuclear morphology was scored.Ultrastructural remodeling was evaluated by scanning electron microscopy and transmission electron microscopy. RESULTS AND CONCLUSION:(1)The ligament healing shape of the relaxation group was better at various time points after surgery,and the excellent and good rate of MAS score was higher(P<0.05).Moreover,the relaxation group could obtain higher ligament vascularization score(P<0.05).(2)The arrangement of collagen bundles and fiber bundles in the two groups gradually tended to be orderly,and the transverse fiber connections between collagen gradually increased and thickened,suggesting that the strength and shape degree of the grafts were gradually improved,but the ligament remodeling in the relaxation group was always faster than that in the normal group at various time points after surgery.(3)The diameter,distribution density,and arrangement degree of collagen fibers in the relaxation group were better than those in the normal group at all time points,especially in the comparison of collagen fiber diameter between and within the relaxation group(P<0.05).
2.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
3.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
4.Effect of high-definition transcranial direct current stimulation combined with upper limb robot on upper limb dysfunction after ischemic stroke
Xiaojun WANG ; Hani WANG ; Hong YU ; Yuanmei LI ; Yuda ZHOU
Chinese Journal of Rehabilitation Theory and Practice 2025;31(2):218-224
ObjectiveTo investigate the effect of high-definition transcranial direct current stimulation (HD-tDCS) combined with upper limb robot on upper limb dysfunction in patients with ischemic stroke. MethodsFrom January, 2023 to March, 2024, 56 inpatients with upper limb dysfunction after ischemic stroke were selected from Zhejiang Rehabilitation Medical Center, and divided into control group (n = 28) and experimental group (n = 28) randomly. All the patients received comprehensive treatment and upper limb robot training, while the control group received sham HD-tDCS and the experimental group received HD-tDCS, for four weeks. They were assessed with Fugl-Meyer Assessment-Upper Extremities (FMA-UE), Wolf Motor Function Test (WMFT) and modified Barthel Index (MBI) before and after treatment. The cortical amplitude, cortical latency and central motor conduction time (CMCT) of transcranial magnetic stimulation motor-evoked potential (MEP) were recorded, and a correlation analysis was conducted. ResultsThe scores of FMA-UE, WMFT and MBI, and MEP cortical amplitude, cortical latency and CMCT improved in both groups after treatment (t > 3.177, P < 0.01), and they were better in the experimental group than in the control group (t > 3.610, P < 0.01). The scores of FMA-UE and WMFT negatively correlated with MEP cortical latency and CMCT, and positively correlated with MEP cortical amplitude (|r| > 0.448, P < 0.001). ConclusionHD-tDCS is effective on upper limb motor function and activities of daily living for patients with ischemic stroke, and can improve corticospinal motor conduction.
5.Controllability Analysis of Structural Brain Networks in Young Smokers
Jing-Jing DING ; Fang DONG ; Hong-De WANG ; Kai YUAN ; Yong-Xin CHENG ; Juan WANG ; Yu-Xin MA ; Ting XUE ; Da-Hua YU
Progress in Biochemistry and Biophysics 2025;52(1):182-193
ObjectiveThe controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers. MethodsFifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerström Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers. ResultsThe average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus, supplementary motor area, gyrus rectus, and posterior cingulate gyrus in the young smokers’ group, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2). ConclusionThe controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers.
6.Research on cardiometabolic risk factors of workers in new forms of employment
Siyuan WANG ; Xiaoshun WANG ; Rui GUAN ; Hong YU ; Xin SONG ; Binshuo HU ; Zhihui WANG ; Xiaowen DING ; Dongsheng NIU ; Tenglong YAN ; Huadong XU
China Occupational Medicine 2025;52(2):150-154
Objective To analyze the prevalence status of cardiometabolic risk factor (CMRF) and its aggregation among workers engaged in new forms of employment. Methods A total of 5 429 new employment workers (including couriers, online food delivery workers, and ride hailing drivers) who underwent health medical examinations at a tertiary hospital in Beijing City were selected as the research subjects using the judgment sampling method. Data on waist circumference, blood pressure, blood glucose, and blood lipid levels were collected to analyze their CMRF [central obesity, elevated blood pressure, elevated blood glucose, elevated triglycerides, and reduced high-density lipoprotein cholesterol (HDL-C)] and their aggregation (with ≥ 2 of the above 5 risk factors) status. Results The detection rates of central obesity, elevated blood pressure, elevated blood glucose, elevated triglycerides, and reduced HDL-C were 61.2%, 38.2%, 29.5%, 40.9% and 22.6%, respectively. The detection rates of CMRF aggregation was 57.8%. The result of multivariable logistic regression analysis showed that male, age ≥45 years, smoking, overweight, and obesity were risk factors for CMRF aggregation (all P<0.05). Conclusion The detection rate of CMRF and its aggregation among workers with new forms of employment in Beijing City is relatively high. Targeted prevention and control efforts should be strengthened for high-risk populations, especially males, workers aged ≥45 years, smokers, and those who are overweight or obese.
7.Effects of Huoxue Xiaoyi Formula (活血消异方) on Tfh Cells and the JAK/STAT Pathway in Ectopic Tissues of Ovarian Endometriosis Model Rats
Weisen FAN ; Yongjia ZHANG ; Yaqian WANG ; Hong LEI ; Huiting YAN ; Ruijie HOU ; Xin WANG ; Yu TAO ; Ruihua ZHAO
Journal of Traditional Chinese Medicine 2025;66(14):1473-1480
ObjectiveTo explore the potential mechanism of Huoxue Xiaoyi Formula (活血消异方, HXF) in treating ovarian endometriosis (OEM) from the perspective of T follicular helper (Tfh) cells and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway. MethodsForty-five female SD rats with normal estrous cycles were randomly divided into three groups, HXF group, model group, and normal group, with 15 rats in each group. A rat model of OEM was established by autologous endometrial tissue implantation. After successful modeling, the treatment group received HXF at 5.85 g/(kg·d) by gavage for 14 consecutive days. The model group and normal group received 1 mL/d of normal saline by gavage. RNA-sequencing data from human proliferative-phase endometriotic and normal endometrial tissues were downloaded from the GEO database. Transcriptomic sequencing was used to analyze gene expression in rat ovarian ectopic tissues and normal uterine tissues, and comparisons were made with human data to verify JAK/STAT pathway activation in proliferative-phase ectopic tissues. Immunohistochemistry was used to detect the positive expression of CXC chemokine receptor 5 (CXCR5) and interleukin-21 (IL-21) in rat ovarian ectopic and normal uterine tissues. Western Blotting was performed to detect the protein levels of IL-21, IL-21 receptor (IL-21R), Janus kinase 1 (JAK1), signal transducer and activator of transcription 6 (STAT6), and B-cell lymphoma 2 (Bcl-2). Tfh cell infiltration was analyzed using immune cell infiltration methods. ResultsGene set enrichment analysis showed that the JAK/STAT pathway was significantly activated in human proliferative-phase endometriotic tissues compared to normal endometrial tissues. Similarly, the JAK/STAT pathway was markedly activated in rat ovarian ectopic tissues in the model group compared to the normal group, but suppressed in the HXF group compared to the model group. Compared with normal uterine tissues, ovarian ectopic tissues in the model group showed increased Tfh cell infiltration scores, higher CXCR5 and IL-21 expression, and elevated levels of IL-21, IL-21R, JAK1, STAT6, and Bcl-2 proteins. Compared with the model group, HXF group showed reduced CXCR5 and IL-21 expression and decreased protein levels of IL-21, IL-21R, JAK1, STAT6, and Bcl-2. ConclusionHXF may suppress activation of the JAK/STAT signaling pathway in ovarian endometriotic tissues by inhibiting IL-21 secretion from Tfh cells.
8.Regenerative endodontic procedures for a prematurely erupted maxillary premolar with immature roots and chronic apical periodontitis: a case report and literature review
WANG Xiao ; XIA Shang ; LIU Yan ; YANG Yu' ; e ; LI Hong
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(8):666-671
Objective:
To investigate treatment strategies for chronic periapical periodontitis in prematurely erupted premolars and provide guidance for managing pulp and periapical diseases in young permanent teeth with immature roots.
Methods:
A regenerative endodontic procedure (REP) was performed on a prematurely erupted maxillary left first premolar (tooth 24) at Nolla stage Ⅶ with chronic apical periodontitis, following standardized protocols including root canal irrigation, disinfection, and coronal sealing. The case was followed up, and a literature review was conducted.
Results:
Clinical resolution of symptoms was observed on tooth 24, with sustained root development. After a 20-month follow-up, the tooth had restored biological function. Literature synthesis revealed that periapical infections in prematurely erupted permanent teeth predominently arise from pulp exposure and bacterial infection, with retrograde infection being rare. For young permanent teeth with necrotic pulp, regenerative endodontic procedures has been established as the treatment of choice to promote apical closure and root maturation. The critical steps of regenerative endodontic procedures include thorough disinfection, induced bleeding to form a fibrin scaffold, and coronal sealing to facilitate stem cell recruitment and differentiation.
Conclusion
Regenerative endodontic procedures represents an effective and viable treatment option for prematurely erupted young permanent teeth with chronic periapical periodontitis.
9.Analysis of The Characteristics of Brain Functional Activity in Gross Motor Tasks in Children With Autism Based on Functional Near-infrared Spectroscopy Technology
Wen-Hao ZONG ; Qi LIANG ; Shi-Yu YANG ; Feng-Jiao WANG ; Meng-Zhao WEI ; Hong LEI ; Gui-Jun DONG ; Ke-Feng LI
Progress in Biochemistry and Biophysics 2025;52(8):2146-2162
ObjectiveBased on functional near-infrared spectroscopy (fNIRS), we investigated the brain activity characteristics of gross motor tasks in children with autism spectrum disorder (ASD) and motor dysfunctions (MDs) to provide a theoretical basis for further understanding the mechanism of MDs in children with ASD and designing targeted intervention programs from a central perspective. MethodsAccording to the inclusion and exclusion criteria, 48 children with ASD accompanied by MDs were recruited into the ASD group and 40 children with typically developing (TD) into the TD group. The fNIRS device was used to collect the information of blood oxygen changes in the cortical motor-related brain regions during single-handed bag throwing and tiptoe walking, and the differences in brain activation and functional connectivity between the two groups of children were analyzed from the perspective of brain activation and functional connectivity. ResultsCompared to the TD group, in the object manipulative motor task (one-handed bag throwing), the ASD group showed significantly reduced activation in both left sensorimotor cortex (SMC) and right secondary visual cortex (V2) (P<0.05), whereas the right pre-motor and supplementary motor cortex (PMC&SMA) had significantly higher activation (P<0.01) and showed bilateral brain region activity; in terms of brain functional integration, there was a significant decrease in the strength of brain functional connectivity (P<0.05) and was mainly associated with dorsolateral prefrontal cortex (DLPFC) and V2. In the body stability motor task (tiptoe walking), the ASD group had significantly higher activation in motor-related brain regions such as the DLPFC, SMC, and PMC&SMA (P<0.05) and showed bilateral brain region activity; in terms of brain functional integration, the ASD group had lower strength of brain functional connectivity (P<0.05) and was mainly associated with PMC&SMA and V2. ConclusionChildren with ASD exhibit abnormal brain functional activity characteristics specific to different gross motor tasks in object manipulative and body stability, reflecting insufficient or excessive compensatory activation of local brain regions and impaired cross-regions integration, which may be a potential reason for the poorer gross motor performance of children with ASD, and meanwhile provides data support for further unraveling the mechanisms underlying the occurrence of MDs in the context of ASD and designing targeted intervention programs from a central perspective.
10.An analysis of the seasonal epidemic characteristics of influenza in Kunming City of Yunnan Province from 2010 to 2024
Zexin HU ; Min DAI ; Wenlong LI ; Minghan WANG ; Xiaowei DENG ; Yue DING ; Hongjie YU ; Juan YANG ; Hong LIU
Shanghai Journal of Preventive Medicine 2025;37(8):643-648
ObjectiveTo characterize the seasonal patterns of influenza in Kunming City, Yunnan Province before, during, and after the COVID-19 pandemic, and provide scientific evidence for optimizing influenza prevention and control strategies. MethodsInfluenza-like illness (ILI) and etiological surveillance data for influenza from the 14th week of 2010 to the 13th week of 2024 in Kunming City of Yunnan Province were collected. Harmonic regression models were constructed to analyze the epidemic characteristics and seasonal patterns of influenza before (2010/2011‒2019/2020 influenza seasons), during (2020/2021‒2022/2023 influenza seasons), and after (2023/2024 influenza season) the COVID-19 pandemic. ResultsBefore the COVID-19 pandemic, influenza in Kunming City mainly exhibited an annual cyclic pattern without a significant semi-annual periodicity, peaking from December to February of the next year, with an epidemic duration of 20‒30 weeks. During the pandemic, influenza seasonality shifted, with an increase in semi-annual periodicity and an approximate one month delay in annual peaks. However, after the pandemic, the annual amplitude of influenza increased compared with that before the pandemic, and the epidemic duration extended by about one month. Although the annual peak largely reverted to the pre-pandemic levels, the annual peaks for different influenza subtypes/lineages had not fully recovered. ConclusionInfluenza seasonality in Kunming City underwent substantial alterations following the COVID-19 pandemic and has not yet fully reverted to pre-pandemic levels. Continuous surveillance on different subtypes/lineages of influenza viruses remains essential, and prevention and control strategies should be adjusted and optimized in a timely manner based on current epidemic trends.


Result Analysis
Print
Save
E-mail